Learn R Programming

⚠️There's a newer version (1.0.14) of this package.Take me there.

rpf (version 0.5)

Response Probability Functions

Description

The purpose of this package is to factor out logic and math common to Item Response Theory fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Version 1.0 will offer most of the functionality as a C library as well as from this R package.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

23,955

Version

0.5

License

GPL (>= 3)

Maintainer

Joshua Pritikin

Last Published

December 25th, 2012

Functions in rpf (0.5)

Class rpf.mdim

The base class for multi-dimensional response probability functions.
LSAT6

Description of LSAT6 data
Class rpf.base

The base class for response probability functions.
itemOutcomeBySumScore

Produce an item outcome by observed sum-score table
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
Class rpf.mdim.grm

The multidimensional graded response item model.
rpf.1dim.residual

Calculate residuals
as.IFAgroup

Convert an OpenMx MxModel object into an IFA group
rpf.sample

Randomly sample response patterns given a list of items
rpf.prob wrapper1

rpf.modify

Create a similar item specification with the given number of factors
EAPscores

Compute EAP scores
rpf.setLocation

Set location related item parameters
rpf.1dim.fit

Calculate item and person Rasch fit statistics
fromFactorLoading

Convert factor loadings to response function slopes
ordinal.gamma

Compute the ordinal gamma association statistic
rpf.rparam

Generates item parameters
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
rpf.mean.info1

Find the point where an item provides mean maximum information
An introduction

rpf - Response Probability Functions
write.flexmirt

Write a flexMIRT PRM file
fromFactorThreshold

Convert factor thresholds to response function intercepts
expandDataFrame

Expand summary table of patterns and frequencies
SitemFit

Compute the S fit statistic for a set of items
bestToOmit

Identify the columns with most missing data
ptw2011.gof.test

Compute the P value that the observed and expected tables come from the same distribution
rpf.1dim.stdresidual

Calculate standardized residuals
toFactorThreshold

Convert response function intercepts to factor thresholds
rpf.gpcm

Create a generalized partial credit model and associated hyperparameters.
Class rpf.1dim

The base class for 1 dimensional response probability functions.
rpf.mcm

Create a multiple-choice response model and associated hyperparameters.
rpf.dLL

Item parameter derivatives
stripData

Strip data and scores from an IFA group
observedSumScore

Compute the observed sum-score
rpf.numParam

Length of the item parameter vector
compressDataFrame

Compress a data frame into unique rows and frequencies
kct

Knox Cube Test dataset
Class rpf.1dim.grm

The unidimensional graded response item model.
omitItems

Omit the given items
rpf.grm

Create a graded response model
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
rpf.lmp

Create logistic function of a monotonic polynomial (LMP) model
rpf.dTheta

Item derivatives with respect to the location in the latent space
sumScoreEAPTest

Conduct the sum-score EAP distribution test
rpf.info

Map an item model, item parameters, and person trait score into a information vector
rpf.id_of

Convert an rpf item model name to an ID
rpf.rescale

Rescale item parameters
ChenThissen1997

Computes local dependence indices for all pairs of items
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.nrm

Create a nominal response model
sumScoreEAP

Compute the sum-score EAP table
omitMostMissing

Omit items with the most missing data
crosstabTest

Monte-Carlo test for cross-tabulation tables
rpf.drm

Create a dichotomous response model
rpf.prob wrapper4

orderCompletely

Order a data.frame by missingness and all columns
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
Class rpf.1dim.gpcm

The unidimensional generalized partial credit item model.
rpf.getLocation

Extract location related item parameters
rpf.prob wrapper5

rpf.prob wrapper3

SitemFit1

Compute the S fit statistic for 1 item
rpf.numSpec

Length of the item model vector
read.flexmirt

Read a flexMIRT PRM file
toFactorLoading

Convert response function slopes to factor loadings
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
LSAT7

Description of LSAT7 data
rpf.paramInfo

Retrieve a description of the given parameter
rpf.mean.info

Find the point where an item provides mean maximum information
Class rpf.1dim.lmp

Unidimensional logistic function of a monotonic polynomial.
logit

Transform from [0,1] to the reals
multinomialFit

Multinomial fit test
rpf.ogive

The ogive constant
science

Liking for Science dataset
rpf.1dim.moment

Calculate cell central moments
rpf.startingParam

Initial item parameters
rpf.prob wrapper2

rpf.logprob wrapper3

Class rpf.mdim.gpcm

The multidimensional generalized partial credit item model.
tabulateRows

Tabulate data.frame rows