Learn R Programming

rpf (version 0.5)

rpf.drm: Create a dichotomous response model

Description

For slope vector a, intercept c, pseudo-guessing parameter g, upper bound u, and latent ability vector theta, the response probability function is $$\mathrm P(\mathrm{pick}=0|a,c,g,u,\theta) = 1- \mathrm P(\mathrm{pick}=1|a,c,g,u,\theta)$$ $$\mathrm P(\mathrm{pick}=1|a,c,g,u,\theta) = g+(u-g)\frac{1}{1+\exp(-(a\theta + c))}$$

Usage

rpf.drm(factors = 1, multidimensional = TRUE, poor = FALSE)

Arguments

factors
the number of factors
multidimensional
whether to use a multidimensional model. Defaults to TRUE.
poor
if TRUE, use the traditional parameterization of the 1d model instead of the slope-intercept parameterization

Value

  • an item model

Details

The pseudo-guessing and upper bound parameter are specified in logit units (see logit).

For discussion on the choice of priors see Cai, Yang, and Hansen (2011, p. 246).

References

Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized Full-Information Item Bifactor Analysis. Psychological Methods, 16(3), 221-248.

Examples

Run this code
spec <- rpf.drm()
rpf.prob(spec, rpf.rparam(spec), 0)

Run the code above in your browser using DataLab