dkprime(x, v1, v2, a, b = 1, order.max=6, log = FALSE)pkprime(q, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
qkprime(p, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
rkprime(n, v1, v2, a, b = 1)
v2
degrees of freedom and non-centrality
parameter a
, scaled by b
.
This is not recycled againsx,q,p,n
.x,q,p,n
.x,q,p,n
.dkprime
gives the density, pkprime
gives the
distribution function, qkprime
gives the quantile function,
and rkprime
generates random deviates.Invalid arguments will result in return value NaN
with a warning.
Equivalently, we can think of $$T = \frac{b Z + a \sqrt{\chi^2_{\nu_1} / \nu_1}}{\sqrt{\chi^2_{\nu_2} / \nu_2}}$$ where $Z$ is a standard normal, and the normal and the (central) chi-squares are independent of each other. When $a=0$ we recover a central t distribution; when $\nu_1=\infty$ we recover a rescaled non-central t distribution; when $b=0$, we get a rescaled square root of a central F distribution; when $\nu_2=\infty$, we recover a Lambda prime distribution.
Poitevineau, Jacques, and Lecoutre, Bruno. "Implementing Bayesian predictive
procedures: The K-prime and K-square distributions." Computational Statistics
and Data Analysis 54, no. 3 (2010): 724-731.
dt, pt, qt, rt
,
lambda prime distribution functions, dlambdap, plambdap, qlambdap, rlambdap
.d1 <- dkprime(1, 50, 20, a=0.01)
d2 <- dkprime(1, 50, 20, a=0.0001)
d3 <- dkprime(1, 50, 20, a=0)
d4 <- dkprime(1, 10000, 20, a=1)
d5 <- dkprime(1, Inf, 20, a=1)
Run the code above in your browser using DataLab