⚠️There's a newer version (0.2.5) of this package. Take me there.

sadists

Some Additional Distributions apparently not available in R.

-- Steven E. Pav, shabbychef@gmail.com

Installation

This package can be installed from CRAN, via drat, or from github:

# via CRAN:
install.packages("sadists")
# via drat:
if (require(drat)) {
    drat:::add("shabbychef")
    install.packages("sadists")
}
# via devtools (typically 'master' is stable):
if (require(devtools)) {
    install_github("shabbychef/sadists")
}

Testing distributions

First some functions to test the 'dpqr' functions:

testf <- function(dpqr, nobs, ...) {
    require(ggplot2)
    require(grid)
    
    set.seed(3940071)
    rv <- sort(dpqr$r(nobs, ...))
    data <- data.frame(draws = rv, pvals = dpqr$p(rv, 
        ...))
    text.size <- 8  # sigh
    
    # http://stackoverflow.com/a/5688125/164611
    p1 <- qplot(rv, geom = "blank") + geom_line(aes(y = ..density.., 
        colour = "Empirical"), stat = "density") + 
        stat_function(fun = function(x) {
            dpqr$d(x, ...)
        }, aes(colour = "Theoretical")) + geom_histogram(aes(y = ..density..), 
        alpha = 0.3) + scale_colour_manual(name = "Density", 
        values = c("red", "blue")) + theme(text = element_text(size = text.size)) + 
        labs(title = "Density (tests dfunc)")
    
    # Q-Q plot
    p2 <- ggplot(data, aes(sample = draws)) + stat_qq(distribution = function(p) {
        dpqr$q(p, ...)
    }) + geom_abline(slope = 1, intercept = 0, colour = "red") + 
        theme(text = element_text(size = text.size)) + 
        labs(title = "Q-Q plot (tests qfunc)")
    
    # empirical CDF of the p-values; should be uniform
    p3 <- ggplot(data, aes(sample = pvals)) + stat_qq(distribution = qunif) + 
        geom_abline(slope = 1, intercept = 0, colour = "red") + 
        theme(text = element_text(size = text.size)) + 
        labs(title = "P-P plot (tests pfunc)")
    
    # Define grid layout to locate plots and print each
    # graph
    pushViewport(viewport(layout = grid.layout(2, 2)))
    print(p1, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:2))
    print(p2, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))
    print(p3, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))
}

Weighted sum of (non-central) chi-squares to power

This distribution is the weighted sum of independent non-central chi-square variates taken to some powers. The special case where the powers are all one half is related to the upsilon distribution. The special case where the powers are all one could be used to compute the distribution of the (doubly non-central) F distribution.

require(sadists)
wts <- c(-1, 1, 3, -3)
df <- c(100, 200, 100, 50)
ncp <- c(0, 1, 0.5, 2)
pow <- c(1, 0.5, 2, 1.5)
testf(list(d = dsumchisqpow, p = psumchisqpow, q = qsumchisqpow, 
    r = rsumchisqpow), nobs = 2^14, wts, df, ncp, pow)

K-prime distribution

The K-prime distribution is the weighted sum of a standard normal and an independent central chi, all divided by another independent central chi. Depending on the degrees of freedom and the weights, the K-prime can appears as a Lambda-prime, a normal, or a central t.

require(sadists)
v1 <- 50
v2 <- 80
a <- 0.5
b <- 1.5
testf(list(d = dkprime, p = pkprime, q = qkprime, r = rkprime), 
    nobs = 2^14, v1, v2, a, b)

Lambda prime distribution

A Lambda prime random variable is the sum of a standard normal and an independent, scaled central chi random variable.

require(sadists)
df <- 70
ts <- 2
testf(list(d = dlambdap, p = plambdap, q = qlambdap, 
    r = rlambdap), nobs = 2^14, df, ts)

Upsilon distribution

An upsilon random variable is the sum of a standard normal and the weighted sum of several indpendent central chis.

require(sadists)
df <- c(30, 50, 100, 20, 10)
ts <- c(-3, 2, 5, -4, 1)
testf(list(d = dupsilon, p = pupsilon, q = qupsilon, 
    r = rupsilon), nobs = 2^14, df, ts)

Doubly non-central t distribution

The doubly non-central t distribution generalizes the t distribution to the case where the denominator chi-square is non-central.

require(sadists)
df <- 75
ncp1 <- 2
ncp2 <- 3
testf(list(d = ddnt, p = pdnt, q = qdnt, r = rdnt), 
    nobs = 2^14, df, ncp1, ncp2)

Doubly non-central F distribution

The doubly non-central F distribution generalizes the F distribution to the case where the denominator chi-square is non-central.

require(sadists)
df1 <- 40
df2 <- 80
ncp1 <- 1.5
ncp2 <- 2.5
testf(list(d = ddnf, p = pdnf, q = qdnf, r = rdnf), 
    nobs = 2^14, df1, df2, ncp1, ncp2)

Doubly non-central Beta distribution

The doubly non-central Beta distribution can be viewed as a transformation of the doubly non-central F distribution.

require(sadists)
df1 <- 40
df2 <- 80
ncp1 <- 1.5
ncp2 <- 2.5
testf(list(d = ddnbeta, p = pdnbeta, q = qdnbeta, r = rdnbeta), 
    nobs = 2^14, df1, df2, ncp1, ncp2)

Doubly non-central Eta distribution

The doubly non-central Eta distribution can be viewed as the square root of the doubly non-central Beta distribution. It is a transform of the doubly non-central t distribution.

require(sadists)
df <- 100
ncp1 <- 0.5
ncp2 <- 2.5
testf(list(d = ddneta, p = pdneta, q = qdneta, r = rdneta), 
    nobs = 2^14, df, ncp1, ncp2)

Sum of logs of (non-central) chi-squares

This distribution is the sum of logs of independent non-central chi-square variates.

require(sadists)
wts <- c(5, -4, 10, -15)
df <- c(100, 200, 100, 50)
ncp <- c(0, 1, 0.5, 2)
testf(list(d = dsumlogchisq, p = psumlogchisq, q = qsumlogchisq, 
    r = rsumlogchisq), nobs = 2^14, wts, df, ncp)

Product of doubly non-central F variates

This distribution is the product of independent doubly non-central F variates. The PDQ functions are computed by transformation on the sum of log chi-squares distribution.

require(sadists)
df1 <- c(10, 20, 5)
df2 <- c(1000, 500, 150)
ncp1 <- c(1, 0, 2.5)
ncp2 <- c(0, 1.5, 5)
testf(list(d = dproddnf, p = pproddnf, q = qproddnf, 
    r = rproddnf), nobs = 2^14, df1, df2, ncp1, ncp2)

Product of (non-central) chi-squares to power

This distribution is the product of independent non-central chi-square variates taken to some powers. The PDQ functions are computed by transformation on the sum of log chi-squares distribution.

require(sadists)
df <- c(100, 200, 100, 50)
ncp <- c(0, 1, 0.5, 2)
pow <- c(1, 0.5, 2, 1.5)
testf(list(d = dprodchisqpow, p = pprodchisqpow, q = qprodchisqpow, 
    r = rprodchisqpow), nobs = 2^14, df, ncp, pow)

Copy Link

Version

Down Chevron

Install

install.packages('sadists')

Monthly Downloads

308

Version

0.2.2

License

LGPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

March 3rd, 2016

Functions in sadists (0.2.2)