dkprime(x, v1, v2, a, b = 1, order.max=6, log = FALSE)
pkprime(q, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
qkprime(p, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
rkprime(n, v1, v2, a, b = 1)v2 degrees of freedom and non-centrality
parameter a, scaled by b.
This is not recycled against the x,q,p,n.x,q,p,n.x,q,p,n.x,q,p,n.dkprime gives the density, pkprime gives the
distribution function, qkprime gives the quantile function,
and rkprime generates random deviates.Invalid arguments will result in return value NaN with a warning.
Equivalently, we can think of $$T = \frac{b Z + a \sqrt{\chi^2_{\nu_1} / \nu_1}}{\sqrt{\chi^2_{\nu_2} / \nu_2}}$$ where $Z$ is a standard normal, and the normal and the (central) chi-squares are independent of each other. When $a=0$ we recover a central t distribution; when $v1=inf$ we recover a rescaled non-central t distribution; when $b=0$, we get a rescaled square root of a central F distribution; when $v2=inf$, we recover a Lambda prime distribution.
Poitevineau, Jacques, and Lecoutre, Bruno. "Implementing Bayesian predictive procedures: The K-prime and K-square distributions." Computational Statistics and Data Analysis 54, no. 3 (2010): 724-731. http://arxiv.org/abs/1003.4890v1
dt, pt, qt, rt,
lambda prime distribution functions, dlambdap, plambdap, qlambdap, rlambdap.
d1 <- dkprime(1, 50, 20, a=0.01)
d2 <- dkprime(1, 50, 20, a=0.0001)
d3 <- dkprime(1, 50, 20, a=0)
d4 <- dkprime(1, 10000, 20, a=1)
d5 <- dkprime(1, Inf, 20, a=1)
Run the code above in your browser using DataLab