Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

scoringutils (version 0.1.7)

Utilities for Scoring and Assessing Predictions

Description

Combines a collection of metrics and proper scoring rules (Tilmann Gneiting & Adrian E Raftery (2007) ) with an easy to use wrapper that can be used to automatically evaluate predictions. Apart from proper scoring rules functions are provided to assess bias, sharpness and calibration (Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel Lowe, Rosalind M. Eggo, W. John Edmunds (2019) ) of forecasts. Several types of predictions can be evaluated: probabilistic forecasts (generally predictive samples generated by Markov Chain Monte Carlo procedures), quantile forecasts or point forecasts. Observed values and predictions can be either continuous, integer, or binary. Users can either choose to apply these rules separately in a vector / matrix format that can be flexibly used within other packages, or they can choose to do an automatic evaluation of their forecasts. This is implemented with 'data.table' and provides a consistent and very efficient framework for evaluating various types of predictions.

Copy Link

Version

Install

install.packages('scoringutils')

Monthly Downloads

1,052

Version

0.1.7

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Nikos Bosse

Last Published

July 14th, 2021

Functions in scoringutils (0.1.7)

eval_forecasts_binary

Evaluate forecasts in a Binary Format
binary_example_data

Binary Forecast Example Data
hist_PIT

PIT Histogram
eval_forecasts_sample

Evaluate forecasts in a Sample-Based Format (Integer or Continuous)
hist_PIT_quantile

PIT Histogram Quantile
check_not_null

Check Variable is not NULL
pit

Probability Integral Transformation
pit_df

Probability Integral Transformation (data.frame Format)
compare_two_models

Compare Two Models Based on Subset of Common Forecasts
add_quantiles

Add Quantiles to Predictions When Summarising
add_rel_skill_to_eval_forecasts

Add relative skill to eval_forecasts()
add_sd

Add Standard Deviation to Predictions When Summarising
extract_from_list

Extract Elements From a List of Lists
dss

Dawid-Sebastiani Score
eval_forecasts

Evaluate forecasts
crps

Ranked Probability Score
logs

LogS
interval_score

Interval Score
continuous_example_data

Continuous Forecast Example Data
correlation_plot

Plot Correlation Between Metrics
interval_coverage

Plot Interval Coverage
pairwise_comparison

Do Pairwise Comparisons of Scores
integer_example_data

Integer Forecast Example Data
mse

Mean Squared Error
quantile_to_long

Pivot Range Format Forecasts From Wide to Long Format
merge_pred_and_obs

Merge Forecast Data And Observations
delete_columns

Delete Columns From a Data.table
geom_mean_helper

Calculate Geometric Mean
quantile_to_range_long

Change Data from a Plain Quantile Format to a Long Range Format
pairwise_comparison_one_group

Do Pairwise Comparison for one Set of Forecasts
quantile_to_wide

Pivot Range Format Forecasts From Long to Wide Format
scoringutils

scoringutils
score_table

Plot Coloured Score Table
range_example_data_wide

Range Forecast Example Data (Wide Format)
quantile_to_range

Change Data from a Plain Quantile Format to a Long Range Format
sample_to_quantile

Change Data from a Sample Based Format to a Quantile Format
example_quantile_forecasts_only

Quantile Example Data - Forecasts only
sample_to_range

Change Data from a Sample Based Format to a Long Interval Range Format
sample_to_range_long

Change Data from a Sample Based Format to a Long Interval Range Format
score_heatmap

Create a Heatmap of a Scoring Metric
range_long_to_quantile

Change Data from a Range Format to a Quantile Format
range_plot

Plot Metrics by Range of the Prediction Interval
wis_components

Plot Contributions to the Weighted Interval Score
range_long_to_wide

Pivot Range Format Forecasts From Long to Wide Format
update_list

Update a List
quantile_coverage

Plot Quantile Coverage
plot_predictions

Plot Predictions vs True Values
quantile_bias

Determines Bias of Quantile Forecasts
example_truth_data_only

Truth data only
pit_df_fast

Probability Integral Transformation (data.frame Format, fast version)
plot_pairwise_comparison

Plot Heatmap of Pairwise Comparisons
range_example_data_long

Range Forecast Example Data (Long Format)
sharpness

Determines sharpness of a probabilistic forecast
quantile_example_data

Quantile Example Data
range_example_data_semi_wide

Range Forecast Example Data (Semi-Wide Format)
range_wide_to_long

Pivot Range Format Forecasts From Wide to Long Format
range_to_quantile

Pivot Change Data from a Range Format to a Quantile Format
show_avail_forecasts

Visualise Where Forecasts Are Available
abs_error

Absolute Error
ae_median_sample

Absolute Error of the Median (Sample-based Version)
ae_median_quantile

Absolute Error of the Median (Quantile-based Version)
brier_score

Brier Score
bias

Determines bias of forecasts
check_equal_length

Check Length