Learn R Programming

scoringutils (version 0.1.7)

ae_median_quantile: Absolute Error of the Median (Quantile-based Version)

Description

Absolute error of the median calculated as

$$ abs(true_value - median_prediction) $$

Usage

ae_median_quantile(true_values, predictions, quantiles = NULL, verbose = TRUE)

Arguments

true_values

A vector with the true observed values of size n

predictions

numeric vector with predictions, corresponding to the quantiles in a second vector, `quantiles`.

quantiles

numeric vector that denotes the quantile for the values in `predictions`. Only those predictions where `quantiles == 0.5` will be kept. If `quantiles` is `NULL`, then all `predictions` and `true_values` will be used (this is then the same as `absolute_error()`)

verbose

logical, return a warning is something unexpected happens

Value

vector with the scoring values

Examples

Run this code
# NOT RUN {
true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
ae_median_quantile(true_values, predicted_values, quantiles = 0.5)
# }

Run the code above in your browser using DataLab