# NOT RUN {
###### data(cookie) ######
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
dim(X);dim(Y)
## standard CCA
fit.cca <-seedCCA(X[,1:4], Y, type="cca") ## standard canonical correlation analysis is done.
plot(fit.cca)
## ordinary least squares
fit.ols1 <-seedCCA(X[,1:4], Y[,1], type="cca") ## ordinary least squares is done, because r=1.
fit.ols2 <-seedCCA(Y[,1], X[,1:4], type="cca") ## ordinary least squares is done, because p=1.
## seeded CCA with case 1
fit.seed1 <- seedCCA(X, Y, type="seed1") ## suggested proper value of u is equal to 3.
fit.seed1.ux <- seedCCA(X, Y, ux=6, type="seed1") ## iterative projections done 6 times.
fit.seed1.uy <- seedCCA(Y, X, uy=6, type="seed1", AS=FALSE) ## projections not done until uy=6.
plot(fit.seed1)
## partial least squares
fit.pls1 <- seedCCA(X, Y[,1], type="pls")
fit.pls.m <- seedCCA(X, Y, type="pls") ## multi-dimensional response
par(mfrow=c(1,2))
plot(fit.pls1); plot(fit.pls.m)
######## data(nutrimouse) ########
data(nutrimouse)
X<-as.matrix(nutrimouse$gene)
Y<-as.matrix(nutrimouse$lipid)
dim(X);dim(Y)
## seeded CCA with case 2
fit.seed2 <- seedCCA(X, Y, type="seed2") ## d not specified, so cut=0.9 (default) used.
fit.seed2.99 <- seedCCA(X, Y, type="seed2", cut=0.99) ## cut=0.99 used.
fit.seed2.d3 <- seedCCA(X, Y, type="seed2", d=3) ## d is specified with 3.
## ux and uy specified, so proper values not suggested.
fit.seed2.uxuy <- seedCCA(X, Y, type="seed2", ux=10, uy=10)
plot(fit.seed2)
# }
Run the code above in your browser using DataLab