sensitivityHHS(z, s, y, bound = c("upper", "lower"), selection,
groupings, empty.principal.stratum, ci = 0.95,
ci.method = c("bootstrap", "analytic"), na.rm = FALSE,
N.boot = 100, oneSidedTest = FALSE, twoSidedTest = TRUE,
isSlaveMode=FALSE)NA for
unselected records.s indicating selection.c(g0,g1), first element g0 being the
value of z which delineates the first group, the last element
g1 being the value of z which delineates the second group.c(s0,s1); describes the s
values that select the empty principal stratum. If
empty.principal.stratum=c(s0,s1), then stratum defined by
S(g0)==s0 and S(g1)==s1 is the empty stratum.c("analytic","bootstrap").
Currently only works for NA
values should be
removed from the data set.ci.method includes FALSETRUEsensitivity2d.ci.method includes
y values in the first group.y0 in the first group in the always selected principal
stratum at the bounds. Pr(Y(g0) <= y0|s(g0)="S(g1)=selection)y values in the second group.y1 in the second group in the always selected principal
stratum at the bounds. Pr(Y(g1) <= y1|s(g0)="S(g1)=selection)sensitivityGBH and specifying the sensitivity parameter beta as
-Inf or Inf.sensitivityGBH, sensitivityJR, sensitivitySGLdata(vaccine.trial)
est.bounds<-with(vaccine.trial,
sensitivityHHS(z=treatment, s=hiv.outcome, y=logVL,
selection="infected", groupings=c("placebo","vaccine"),
empty.principal.stratum=c("not infected","infected"),
N.boot=100)
)
est.boundsRun the code above in your browser using DataLab