# NOT RUN {
data(Ped_HSg5, SimGeno_example, LH_HSg5, package="sequoia")
# count Mendelian errors in an existing pedigree
Ped.OH <- CalcOHLLR(Pedigree = Ped_HSg5, GenoM = SimGeno_example,
CalcLLR = FALSE)
Ped.OH[50:55,]
# view histograms
SummarySeq(Ped.OH, Panels="OH")
# Parent likelihood ratios in an existing pedigree, including for
# non-genotyped parents
Ped.LLR <- CalcOHLLR(Pedigree = Ped_HSg5, GenoM = SimGeno_example,
CalcLLR = TRUE, LifeHistData=LH_HSg5, AgePrior=TRUE)
SummarySeq(Ped.LLR, Panels="LLR")
# }
# NOT RUN {
# likelihood ratios change with presumed genotyping error rate:
Ped.LLR.B <- CalcOHLLR(Pedigree = Ped_HSg5, GenoM = SimGeno_example,
CalcLLR = TRUE, LifeHistData=LH_HSg5, AgePrior=TRUE,
Err = 0.005)
SummarySeq(Ped.LLR.B, Panels="LLR")
# run sequoia with CalcLLR=FALSE, and add OH + LLR later:
data(Ped_griffin, LH_griffin, package="sequoia")
Genotypes <- SimGeno(Ped_griffin, nSnp=400)
SeqOUT <- sequoia(Genotypes, LH_griffin, CalcLLR=FALSE,quiet=TRUE,Plot=FALSE)
PedA <- CalcOHLLR(Pedigree = SeqOUT[["Pedigree"]][, 1:3], GenoM = Genotypes,
LifeHistData = LH_griffin, AgePrior = TRUE, Complex = "full")
SummarySeq(PedA, Panels=c("LLR", "OH"))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab