# NOT RUN {
set.seed(2018)
# generate design matrix x
n=50;p=100
s=10
x=matrix(0,n,1+2*p)
x[,1]=sample(c(0,1),n,replace = TRUE)
x[,seq(2,1+2*p,2)]=matrix(rnorm(n*p),n,p)
x[,seq(3,1+2*p,2)]=x[,seq(2,1+2*p,2)]*x[,1]
g=c(p+1,rep(1:p,rep(2,p))) # groups
v=c(0,rep(1,2*p)) # penalization status
# generate beta
beta=c(rnorm(13,0,2),rep(0,ncol(x)-13))
beta[c(2,4,7,9)]=0
# generate y
data1=x%*%beta
noise1=rnorm(n)
snr1=as.numeric(sqrt(var(data1)/(s*var(noise1))))
y1=data1+snr1*noise1
lambda = c(8,0,8)
hierarchy = 1
gfit1 = glog(y1,x,g,v,lambda,hierarchy,family = "gaussian")
# }
Run the code above in your browser using DataLab