data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
## look at the data
#head(CPpheno)
#CPgeno[1:5,1:5]
## fit a model including additive and dominance effects
y <- CPpheno$color
Za <- diag(length(y))
Zd <- diag(length(y))
Ze <- diag(length(y))
A <- A.mat(CPgeno) # additive relationship matrix
D <- D.mat(CPgeno) # dominant relationship matrix
E <- E.mat(CPgeno) # epistatic relationship matrix
y.trn <- y # for prediction accuracy
ww <- sample(c(1:dim(Za)[1]),72) # delete data for 1/5 of the population
y.trn[ww] <- NA
###================###
### ADDITIVE MODEL ###
###================###
#ETA.A <- list(list(Z=Za,K=A))
#ans.A <- mmer(y=y.trn, Z=ETA.A)
#cor(ans.A$fitted.y[ww], y[ww], use="pairwise.complete.obs")
###=========================###
### ADDITIVE-DOMINANT MODEL ###
###=========================###
#ETA.AD <- list(list(Z=Za,K=A),list(Z=Zd,K=D))
#ans.AD <- mmer(y=y.trn, Z=ETA.AD)
#cor(ans.AD$fitted.y[ww], y[ww], use="pairwise.complete.obs")
### greater accuracy !!!! 4 percent increment!!
###===================================###
### ADDITIVE-DOMINANT-EPISTATIC MODEL ###
###===================================###
#ETA.ADE <- list(list(Z=Za,K=A),list(Z=Zd,K=D),list(Z=Ze,K=E))
#ans.ADE <- mmer(y=y.trn, Z=ETA.ADE)
#cor(ans.ADE$fitted.y[ww], y[ww], use="pairwise.complete.obs")
### adding more effects doesn't necessarily increase prediction accuracy!
Run the code above in your browser using DataLab