## Fit a Poisson GLMM with adjacency correlation model
data(scotlip) ## loads scotlip data frame, and Nmatrix
corrHLfit(cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(scotlip$expec)),
data=scotlip,family=poisson(),
adjMatrix=Nmatrix,lower=list(rho=0),upper=list(rho=0.1745))
## fit a non-spatial, Beta-binomial model:
data(Loaloa)
idx <-as.factor(seq(nrow(Loaloa)))
fLoaloa <- cbind(Loaloa,idx)
HLfit(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+(1|idx),HLmethod="HL(1,1)",
data=fLoaloa,family=binomial(),rand.family=Beta())
## fit a non-spatial, Gamma GLMM:
data(wafers)
HLfit(y ~X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log),
data=wafers)
## Same with fixed-effects predictor for residual variance
## ( = structured-dispersion model):
HLfit(y ~X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log),
resid.formula = ~ X3+I(X3^2) ,data=wafers)
## fit a GLM (not mixed) with structured dispersion:
HLfit( y ~X1+X2+X1*X3+X2*X3+I(X2^2),family=Gamma(log),
resid.formula = ~ X3+I(X3^2) ,data=wafers)
## Fit of binary data using PQL/L. See ?arabidopsis
data(arabidopsis)
HLCor(cbind(pos1046738,1-pos1046738)~seasonal+Matern(1|LAT+LONG),
ranPars=list(rho=0.129,lambda=4.28,nu=0.291),
family=binomial(),HLmethod="PQL/L",data=arabidopsis)
Run the code above in your browser using DataLab