Learn R Programming

⚠️There's a newer version (1.9.0) of this package.Take me there.

sparklyr: R interface for Apache Spark

  • Connect to Spark from R. The sparklyr package provides a complete dplyr backend.
  • Filter and aggregate Spark datasets then bring them into R for analysis and visualization.
  • Use Spark's distributed machine learning library from R.
  • Create extensions that call the full Spark API and provide interfaces to Spark packages.

Installation

You can install the sparklyr package from CRAN as follows:

install.packages("sparklyr")

You should also install a local version of Spark for development purposes:

library(sparklyr)
spark_install(version = "2.1.0")

To upgrade to the latest version of sparklyr, run the following command and restart your r session:

devtools::install_github("rstudio/sparklyr")

If you use the RStudio IDE, you should also download the latest preview release of the IDE which includes several enhancements for interacting with Spark (see the RStudio IDE section below for more details).

Connecting to Spark

You can connect to both local instances of Spark as well as remote Spark clusters. Here we'll connect to a local instance of Spark via the spark_connect function:

library(sparklyr)
sc <- spark_connect(master = "local")

The returned Spark connection (sc) provides a remote dplyr data source to the Spark cluster.

For more information on connecting to remote Spark clusters see the Deployment section of the sparklyr website.

Using dplyr

We can now use all of the available dplyr verbs against the tables within the cluster.

We'll start by copying some datasets from R into the Spark cluster (note that you may need to install the nycflights13 and Lahman packages in order to execute this code):

install.packages(c("nycflights13", "Lahman"))
library(dplyr)
iris_tbl <- copy_to(sc, iris)
flights_tbl <- copy_to(sc, nycflights13::flights, "flights")
batting_tbl <- copy_to(sc, Lahman::Batting, "batting")
src_tbls(sc)
## [1] "batting" "flights" "iris"

To start with here's a simple filtering example:

# filter by departure delay and print the first few records
flights_tbl %>% filter(dep_delay == 2)
## # Source:   lazy query [?? x 19]
## # Database: spark_connection
##     year month   day dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>
##  1  2013     1     1      517            515         2      830
##  2  2013     1     1      542            540         2      923
##  3  2013     1     1      702            700         2     1058
##  4  2013     1     1      715            713         2      911
##  5  2013     1     1      752            750         2     1025
##  6  2013     1     1      917            915         2     1206
##  7  2013     1     1      932            930         2     1219
##  8  2013     1     1     1028           1026         2     1350
##  9  2013     1     1     1042           1040         2     1325
## 10  2013     1     1     1231           1229         2     1523
## # ... with more rows, and 12 more variables: sched_arr_time <int>,
## #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dbl>

Introduction to dplyr provides additional dplyr examples you can try. For example, consider the last example from the tutorial which plots data on flight delays:

delay <- flights_tbl %>% 
  group_by(tailnum) %>%
  summarise(count = n(), dist = mean(distance), delay = mean(arr_delay)) %>%
  filter(count > 20, dist < 2000, !is.na(delay)) %>%
  collect

# plot delays
library(ggplot2)
ggplot(delay, aes(dist, delay)) +
  geom_point(aes(size = count), alpha = 1/2) +
  geom_smooth() +
  scale_size_area(max_size = 2)
## `geom_smooth()` using method = 'gam'

Window Functions

dplyr window functions are also supported, for example:

batting_tbl %>%
  select(playerID, yearID, teamID, G, AB:H) %>%
  arrange(playerID, yearID, teamID) %>%
  group_by(playerID) %>%
  filter(min_rank(desc(H)) <= 2 & H > 0)
## # Source:     lazy query [?? x 7]
## # Database:   spark_connection
## # Groups:     playerID
## # Ordered by: playerID, yearID, teamID
##     playerID yearID teamID     G    AB     R     H
##        <chr>  <int>  <chr> <int> <int> <int> <int>
##  1 aaronha01   1959    ML1   154   629   116   223
##  2 aaronha01   1963    ML1   161   631   121   201
##  3 abbotji01   1999    MIL    20    21     0     2
##  4 abnersh01   1992    CHA    97   208    21    58
##  5 abnersh01   1990    SDN    91   184    17    45
##  6 acklefr01   1963    CHA     2     5     0     1
##  7 acklefr01   1964    CHA     3     1     0     1
##  8 adamecr01   2016    COL   121   225    25    49
##  9 adamecr01   2015    COL    26    53     4    13
## 10 adamsac01   1943    NY1    70    32     3     4
## # ... with more rows

For additional documentation on using dplyr with Spark see the dplyr section of the sparklyr website.

Using SQL

It's also possible to execute SQL queries directly against tables within a Spark cluster. The spark_connection object implements a DBI interface for Spark, so you can use dbGetQuery to execute SQL and return the result as an R data frame:

library(DBI)
iris_preview <- dbGetQuery(sc, "SELECT * FROM iris LIMIT 10")
iris_preview
##    Sepal_Length Sepal_Width Petal_Length Petal_Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa

Machine Learning

You can orchestrate machine learning algorithms in a Spark cluster via the machine learning functions within sparklyr. These functions connect to a set of high-level APIs built on top of DataFrames that help you create and tune machine learning workflows.

Here's an example where we use ml_linear_regression to fit a linear regression model. We'll use the built-in mtcars dataset, and see if we can predict a car's fuel consumption (mpg) based on its weight (wt), and the number of cylinders the engine contains (cyl). We'll assume in each case that the relationship between mpg and each of our features is linear.

# copy mtcars into spark
mtcars_tbl <- copy_to(sc, mtcars)

# transform our data set, and then partition into 'training', 'test'
partitions <- mtcars_tbl %>%
  filter(hp >= 100) %>%
  mutate(cyl8 = cyl == 8) %>%
  sdf_partition(training = 0.5, test = 0.5, seed = 1099)

# fit a linear model to the training dataset
fit <- partitions$training %>%
  ml_linear_regression(response = "mpg", features = c("wt", "cyl"))
## * No rows dropped by 'na.omit' call
fit
## Call: ml_linear_regression(., response = "mpg", features = c("wt", "cyl"))
## 
## Coefficients:
## (Intercept)          wt         cyl 
##   33.499452   -2.818463   -0.923187

For linear regression models produced by Spark, we can use summary() to learn a bit more about the quality of our fit, and the statistical significance of each of our predictors.

summary(fit)
## Call: ml_linear_regression(., response = "mpg", features = c("wt", "cyl"))
## 
## Deviance Residuals::
##    Min     1Q Median     3Q    Max 
## -1.752 -1.134 -0.499  1.296  2.282 
## 
## Coefficients:
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) 33.49945    3.62256  9.2475 0.0002485 ***
## wt          -2.81846    0.96619 -2.9171 0.0331257 *  
## cyl         -0.92319    0.54639 -1.6896 0.1518998    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-Squared: 0.8274
## Root Mean Squared Error: 1.422

Spark machine learning supports a wide array of algorithms and feature transformations and as illustrated above it's easy to chain these functions together with dplyr pipelines. To learn more see the machine learning section.

Reading and Writing Data

You can read and write data in CSV, JSON, and Parquet formats. Data can be stored in HDFS, S3, or on the local filesystem of cluster nodes.

temp_csv <- tempfile(fileext = ".csv")
temp_parquet <- tempfile(fileext = ".parquet")
temp_json <- tempfile(fileext = ".json")

spark_write_csv(iris_tbl, temp_csv)
iris_csv_tbl <- spark_read_csv(sc, "iris_csv", temp_csv)

spark_write_parquet(iris_tbl, temp_parquet)
iris_parquet_tbl <- spark_read_parquet(sc, "iris_parquet", temp_parquet)

spark_write_json(iris_tbl, temp_json)
iris_json_tbl <- spark_read_json(sc, "iris_json", temp_json)

src_tbls(sc)
## [1] "batting"      "flights"      "iris"         "iris_csv"    
## [5] "iris_json"    "iris_parquet" "mtcars"

Distributed R

You can execute arbitrary r code across your cluster using spark_apply. For example, we can apply rgamma over iris as follows:

spark_apply(iris_tbl, function(data) {
  data[1:4] + rgamma(1,2)
})
## # Source:   table<sparklyr_tmp_117d835ce14f9> [?? x 4]
## # Database: spark_connection
##    Sepal_Length Sepal_Width Petal_Length Petal_Width
##           <dbl>       <dbl>        <dbl>       <dbl>
##  1     9.983684    8.383684     6.283684    5.083684
##  2     9.783684    7.883684     6.283684    5.083684
##  3     9.583684    8.083684     6.183684    5.083684
##  4     9.483684    7.983684     6.383684    5.083684
##  5     9.883684    8.483684     6.283684    5.083684
##  6    10.283684    8.783684     6.583684    5.283684
##  7     9.483684    8.283684     6.283684    5.183684
##  8     9.883684    8.283684     6.383684    5.083684
##  9     9.283684    7.783684     6.283684    5.083684
## 10     9.783684    7.983684     6.383684    4.983684
## # ... with more rows

You can also group by columns to perform an operation over each group of rows and make use of any package within the closure:

spark_apply(
  iris_tbl,
  function(e) broom::tidy(lm(Petal_Width ~ Petal_Length, e)),
  names = c("term", "estimate", "std.error", "statistic", "p.value"),
  group_by = "Species"
)
## # Source:   table<sparklyr_tmp_117d876fbf859> [?? x 6]
## # Database: spark_connection
##      Species         term    estimate  std.error  statistic      p.value
##        <chr>        <chr>       <dbl>      <dbl>      <dbl>        <dbl>
## 1 versicolor  (Intercept) -0.08428835 0.16070140 -0.5245029 6.023428e-01
## 2 versicolor Petal_Length  0.33105360 0.03750041  8.8279995 1.271916e-11
## 3  virginica  (Intercept)  1.13603130 0.37936622  2.9945505 4.336312e-03
## 4  virginica Petal_Length  0.16029696 0.06800119  2.3572668 2.253577e-02
## 5     setosa  (Intercept) -0.04822033 0.12164115 -0.3964146 6.935561e-01
## 6     setosa Petal_Length  0.20124509 0.08263253  2.4354220 1.863892e-02

Extensions

The facilities used internally by sparklyr for its dplyr and machine learning interfaces are available to extension packages. Since Spark is a general purpose cluster computing system there are many potential applications for extensions (e.g. interfaces to custom machine learning pipelines, interfaces to 3rd party Spark packages, etc.).

Here's a simple example that wraps a Spark text file line counting function with an R function:

# write a CSV 
tempfile <- tempfile(fileext = ".csv")
write.csv(nycflights13::flights, tempfile, row.names = FALSE, na = "")

# define an R interface to Spark line counting
count_lines <- function(sc, path) {
  spark_context(sc) %>% 
    invoke("textFile", path, 1L) %>% 
      invoke("count")
}

# call spark to count the lines of the CSV
count_lines(sc, tempfile)
## [1] 336777

To learn more about creating extensions see the Extensions section of the sparklyr website.

Table Utilities

You can cache a table into memory with:

tbl_cache(sc, "batting")

and unload from memory using:

tbl_uncache(sc, "batting")

Connection Utilities

You can view the Spark web console using the spark_web function:

spark_web(sc)

You can show the log using the spark_log function:

spark_log(sc, n = 10)
## 17/08/25 12:54:28 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 72 (/var/folders/vd/krh_y3qd0c5bw8k77lmdtw7r0000gn/T//Rtmps6VbEg/file117d8538598e1.csv MapPartitionsRDD[293] at textFile at NativeMethodAccessorImpl.java:0)
## 17/08/25 12:54:28 INFO TaskSchedulerImpl: Adding task set 72.0 with 1 tasks
## 17/08/25 12:54:28 INFO TaskSetManager: Starting task 0.0 in stage 72.0 (TID 112, localhost, executor driver, partition 0, PROCESS_LOCAL, 6010 bytes)
## 17/08/25 12:54:28 INFO Executor: Running task 0.0 in stage 72.0 (TID 112)
## 17/08/25 12:54:28 INFO HadoopRDD: Input split: file:/var/folders/vd/krh_y3qd0c5bw8k77lmdtw7r0000gn/T/Rtmps6VbEg/file117d8538598e1.csv:0+33313106
## 17/08/25 12:54:28 INFO Executor: Finished task 0.0 in stage 72.0 (TID 112). 1123 bytes result sent to driver
## 17/08/25 12:54:28 INFO TaskSetManager: Finished task 0.0 in stage 72.0 (TID 112) in 114 ms on localhost (executor driver) (1/1)
## 17/08/25 12:54:28 INFO TaskSchedulerImpl: Removed TaskSet 72.0, whose tasks have all completed, from pool 
## 17/08/25 12:54:28 INFO DAGScheduler: ResultStage 72 (count at NativeMethodAccessorImpl.java:0) finished in 0.114 s
## 17/08/25 12:54:28 INFO DAGScheduler: Job 49 finished: count at NativeMethodAccessorImpl.java:0, took 0.117630 s

Finally, we disconnect from Spark:

spark_disconnect(sc)

RStudio IDE

The latest RStudio Preview Release of the RStudio IDE includes integrated support for Spark and the sparklyr package, including tools for:

  • Creating and managing Spark connections
  • Browsing the tables and columns of Spark DataFrames
  • Previewing the first 1,000 rows of Spark DataFrames

Once you've installed the sparklyr package, you should find a new Spark pane within the IDE. This pane includes a New Connection dialog which can be used to make connections to local or remote Spark instances:

Once you've connected to Spark you'll be able to browse the tables contained within the Spark cluster and preview Spark DataFrames using the standard RStudio data viewer:

You can also connect to Spark through Livy through a new connection dialog:

The RStudio IDE features for sparklyr are available now as part of the RStudio Preview Release.

Using H2O

rsparkling is a CRAN package from H2O that extends sparklyr to provide an interface into Sparkling Water. For instance, the following example installs, configures and runs h2o.glm:

options(rsparkling.sparklingwater.version = "2.1.0")

library(rsparkling)
library(sparklyr)
library(dplyr)
library(h2o)

sc <- spark_connect(master = "local", version = "2.1.0")
mtcars_tbl <- copy_to(sc, mtcars, "mtcars")

mtcars_h2o <- as_h2o_frame(sc, mtcars_tbl, strict_version_check = FALSE)

mtcars_glm <- h2o.glm(x = c("wt", "cyl"), 
                      y = "mpg",
                      training_frame = mtcars_h2o,
                      lambda_search = TRUE)
mtcars_glm
## Model Details:
## ==============
## 
## H2ORegressionModel: glm
## Model ID:  GLM_model_R_1503683692912_1 
## GLM Model: summary
##     family     link                              regularization
## 1 gaussian identity Elastic Net (alpha = 0.5, lambda = 0.1013 )
##                                                                lambda_search
## 1 nlambda = 100, lambda.max = 10.132, lambda.min = 0.1013, lambda.1se = -1.0
##   number_of_predictors_total number_of_active_predictors
## 1                          2                           2
##   number_of_iterations                                training_frame
## 1                    0 frame_rdd_29_970371551cefadb7219d3e25e94a4bc0
## 
## Coefficients: glm coefficients
##       names coefficients standardized_coefficients
## 1 Intercept    38.941654                 20.090625
## 2       cyl    -1.468783                 -2.623132
## 3        wt    -3.034558                 -2.969186
## 
## H2ORegressionMetrics: glm
## ** Reported on training data. **
## 
## MSE:  6.017684
## RMSE:  2.453097
## MAE:  1.940985
## RMSLE:  0.1114801
## Mean Residual Deviance :  6.017684
## R^2 :  0.8289895
## Null Deviance :1126.047
## Null D.o.F. :31
## Residual Deviance :192.5659
## Residual D.o.F. :29
## AIC :156.2425
spark_disconnect(sc)

Connecting through Livy

Livy enables remote connections to Apache Spark clusters. Connecting to Spark clusters through Livy is under experimental development in sparklyr. Please post any feedback or questions as a GitHub issue as needed.

Before connecting to Livy, you will need the connection information to an existing service running Livy. Otherwise, to test livy in your local environment, you can install it and run it locally as follows:

livy_install()
livy_service_start()

To connect, use the Livy service address as master and method = "livy" in spark_connect. Once connection completes, use sparklyr as usual, for instance:

sc <- spark_connect(master = "http://localhost:8998", method = "livy")
copy_to(sc, iris)
## # Source:   table<iris> [?? x 5]
## # Database: spark_connection
##    Sepal_Length Sepal_Width Petal_Length Petal_Width Species
##           <dbl>       <dbl>        <dbl>       <dbl>   <chr>
##  1          5.1         3.5          1.4         0.2  setosa
##  2          4.9         3.0          1.4         0.2  setosa
##  3          4.7         3.2          1.3         0.2  setosa
##  4          4.6         3.1          1.5         0.2  setosa
##  5          5.0         3.6          1.4         0.2  setosa
##  6          5.4         3.9          1.7         0.4  setosa
##  7          4.6         3.4          1.4         0.3  setosa
##  8          5.0         3.4          1.5         0.2  setosa
##  9          4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## # ... with more rows
spark_disconnect(sc)

Once you are done using livy locally, you should stop this service with:

livy_service_stop()

To connect to remote livy clusters that support basic authentication connect as:

config <- livy_config_auth("<username>", "<password">)
sc <- spark_connect(master = "<address>", method = "livy", config = config)
spark_disconnect(sc)

Copy Link

Version

Install

install.packages('sparklyr')

Monthly Downloads

41,984

Version

0.6.4

License

Apache License 2.0 | file LICENSE

Maintainer

Javier Luraschi

Last Published

March 18th, 2025

Functions in sparklyr (0.6.4)

copy_to.spark_connection

Copy an R Data Frame to Spark
download_scalac

Downloads default Scala Compilers
ensure

Enforce Specific Structure for R Objects
ft_elementwise_product

Feature Transformation -- ElementwiseProduct
ft_index_to_string

Feature Transformation -- IndexToString
livy_install

Install Livy
livy_service_start

Start Livy
ml_decision_tree

Spark ML -- Decision Trees
ml_generalized_linear_regression

Spark ML -- Generalized Linear Regression
ml_pca

Spark ML -- Principal Components Analysis
ml_prepare_dataframe

Prepare a Spark DataFrame for Spark ML Routines
ml_saveload

Save / Load a Spark ML Model Fit
ml_survival_regression

Spark ML -- Survival Regression
sdf-saveload

Save / Load a Spark DataFrame
sdf_along

Create DataFrame for along Object
sdf_num_partitions

Gets number of partitions of a Spark DataFrame
find_scalac

Discover the Scala Compiler
ft_regex_tokenizer

Feature Tranformation -- RegexTokenizer
ft_sql_transformer

Feature Transformation -- SQLTransformer
ft_tokenizer

Feature Tranformation -- Tokenizer
ft_vector_assembler

Feature Transformation -- VectorAssembler
ml_classification_eval

Spark ML - Classification Evaluator
ml_create_dummy_variables

Create Dummy Variables
ml_model

Create an ML Model Object
sdf_partition

Partition a Spark Dataframe
sdf_register

Register a Spark DataFrame
sdf_repartition

Repartition a Spark DataFrame
spark_apply_log

Log Writter for Spark Apply
spark_compilation_spec

Define a Spark Compilation Specification
DBISparkResult-class

DBI Spark Result.
checkpoint_directory

Set/Get Spark checkpoint directory
ft_count_vectorizer

Feature Tranformation -- CountVectorizer
ft_discrete_cosine_transform

Feature Transformation -- Discrete Cosine Transform (DCT)
invoke_method

Generic call interface for spark shell
livy_config

Create a Spark Configuration for Livy
ml_glm_tidiers

Tidying methods for Spark ML linear models
ml_gradient_boosted_trees

Spark ML -- Gradient-Boosted Tree
ml_one_vs_rest

Spark ML -- One vs Rest
ml_options

Options for Spark ML Routines
%>%

Pipe operator
connection_is_open

Check whether the connection is open
connection_spark_shinyapp

A Shiny app that can be used to construct a spark_connect statement
ft_binarizer

Feature Transformation -- Binarizer
ft_bucketizer

Feature Transformation -- Bucketizer
compile_package_jars

Compile Scala sources into a Java Archive (jar)
connection_config

Read configuration values for a connection
ft_one_hot_encoder

Feature Transformation -- OneHotEncoder
print_jobj

Generic method for print jobj for a connection type
sdf_fast_bind_cols

Fast cbind for Spark DataFrames
sdf_last_index

Returns the last index of a Spark DataFrame
sdf_len

Create DataFrame for Length
ft_quantile_discretizer

Feature Transformation -- QuantileDiscretizer
hive_context_config

Runtime configuration interface for Hive
invoke

Invoke a Method on a JVM Object
ml_kmeans

Spark ML -- K-Means Clustering
ml_lda

Spark ML -- Latent Dirichlet Allocation
ml_linear_regression

Spark ML -- Linear Regression
ml_logistic_regression

Spark ML -- Logistic Regression
ml_prepare_response_features_intercept

Pre-process the Inputs to a Spark ML Routine
ft_stop_words_remover

Feature Tranformation -- StopWordsRemover
ft_string_indexer

Feature Transformation -- StringIndexer
ml_als_factorization

Spark ML -- Alternating Least Squares (ALS) matrix factorization.
ml_binary_classification_eval

Spark ML - Binary Classification Evaluator
ml_multilayer_perceptron

Spark ML -- Multilayer Perceptron
sdf_mutate

Mutate a Spark DataFrame
sdf_residuals.ml_model_generalized_linear_regression

Model Residuals
sdf_sample

Randomly Sample Rows from a Spark DataFrame
spark_apply

Apply an R Function in Spark
spark_apply_bundle

Create Bundle for Spark Apply
ml_random_forest

Spark ML -- Random Forests
sdf_bind

Bind multiple Spark DataFrames by row and column
sdf_broadcast

Broadcast hint
ml_naive_bayes

Spark ML -- Naive-Bayes
reexports

Objects exported from other packages
register_extension

Register a Package that Implements a Spark Extension
sdf_checkpoint

Checkpoint a Spark DataFrame
sdf_coalesce

Coalesces a Spark DataFrame
sdf_quantile

Compute (Approximate) Quantiles with a Spark DataFrame
sdf_read_column

Read a Column from a Spark DataFrame
sdf_schema

Read the Schema of a Spark DataFrame
sdf_separate_column

Separate a Vector Column into Scalar Columns
spark_config_value

A helper function to retrieve values from spark_config()
spark_dataframe

Retrieve a Spark DataFrame
spark_default_compilation_spec

Default Compilation Specification for Spark Extensions
spark_read_table

Reads from a Spark Table into a Spark DataFrame.
spark_read_text

Read a Text file into a Spark DataFrame
spark_config_exists

A helper function to check value exist under spark_config()
sdf_persist

Persist a Spark DataFrame
sdf_pivot

Pivot a Spark DataFrame
sdf_seq

Create DataFrame for Range
spark_default_version

determine the version that will be used by default if version is NULL
spark_dependency

Define a Spark dependency
spark_read_parquet

Read a Parquet file into a Spark DataFrame
spark_versions

Retrieves a dataframe available Spark versions that van be installed.
spark_web

Open the Spark web interface
tbl_uncache

Uncache a Spark Table
sdf_sort

Sort a Spark DataFrame
spark-api

Access the Spark API
spark-connections

Manage Spark Connections
worker_spark_apply_unbundle

Extracts a bundle of dependencies required by spark_apply()
spark_home_dir

Find the SPARK_HOME directory for a version of Spark
spark_home_set

Set the SPARK_HOME environment variable
spark_read_jdbc

Read from JDBC connection into a Spark DataFrame.
spark_read_json

Read a JSON file into a Spark DataFrame
spark_save_table

Saves a Spark DataFrame as a Spark table
spark_table_name

Generate a Table Name from Expression
tbl_cache

Cache a Spark Table
tbl_change_db

Use specific database
spark_read_source

Read from a generic source into a Spark DataFrame.
spark_write_json

Write a Spark DataFrame to a JSON file
spark_write_parquet

Write a Spark DataFrame to a Parquet file
spark_write_text

Write a Spark DataFrame to a Text file
src_databases

Show database list
ml_model_data

Extracts data associated with a Spark ML model
spark_compile

Compile Scala sources into a Java Archive
spark_config

Read Spark Configuration
spark_write_source

Writes a Spark DataFrame into a generic source
spark_write_table

Writes a Spark DataFrame into a Spark table
sdf_copy_to

Copy an Object into Spark
sdf_dim

Support for Dimension Operations
sdf_predict

Model Predictions with Spark DataFrames
sdf_project

Project features onto principal components
spark_connection

Retrieve the Spark Connection Associated with an R Object
spark_context_config

Runtime configuration interface for Spark.
spark_version

Get the Spark Version Associated with a Spark Connection
spark_version_from_home

Get the Spark Version Associated with a Spark Installation
sdf_with_sequential_id

Add a Sequential ID Column to a Spark DataFrame
sdf_with_unique_id

Add a Unique ID Column to a Spark DataFrame
spark_install_find

Find a given Spark installation by version.
spark_install_sync

helper function to sync sparkinstall project to sparklyr
spark_jobj

Retrieve a Spark JVM Object Reference
spark_load_table

Reads from a Spark Table into a Spark DataFrame.
spark_write_csv

Write a Spark DataFrame to a CSV
spark_write_jdbc

Writes a Spark DataFrame into a JDBC table
ml_tree_feature_importance

Spark ML - Feature Importance for Tree Models
na.replace

Replace Missing Values in Objects
spark_log

View Entries in the Spark Log
spark_read_csv

Read a CSV file into a Spark DataFrame