Learn R Programming

spatstat.explore (version 3.7-0)

Jmulti.inhom: Inhomogeneous Marked J-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype \(J\) function.

Usage

Jmulti.inhom(X, I, J,
             lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
             lambdamin = NULL,
             ...,
             r = NULL,
             ReferenceMeasureMarkSetI = NULL,
             ratio = FALSE)

Arguments

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype \(J\) function.

Details

This function is the counterpart of Jmulti for inhomogeneous patterns. It is computed by evaluating the inhomogeneous \(G\) function GmultiInhom and the inhomogeneous \(F\) function FmultiInhom and computing the ratio \(J = (1-G)/(1-F)\).

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Jcross.inhom, Jdot.inhom for special cases.

GmultiInhom, FmultiInhom, Jmulti.

Examples

Run this code
  X <- rescale(amacrine)
  I <- (marks(X) == "on")
  J <- (marks(X) == "off")
  if(interactive() && require(spatstat.model)) {
    ## how to do it normally
    mod <- ppm(X ~ marks * x)
    lam <- fitted(mod, dataonly=TRUE)
    lmin <- min(predict(mod)[["off"]]) * 0.9
    dd <- NULL
  } else {
    ## for package testing
    lam <- intensity(X)[as.integer(marks(X))]
    lmin <- intensity(X)[2] * 0.9
    dd <- 32
  }
  JM <- Jmulti.inhom(X, I, J, lambda=lam, lambdamin=lmin, dimyx=dd)

Run the code above in your browser using DataLab