Update a Fitted Point Process Model

update method for class "ppm".

update.ppm(object, ..., fixdummy=TRUE)
An existing fitted point process model, typically produced by ppm.
Arguments to be updated in the new call to ppm.
Logical flag indicating whether the quadrature scheme for the call to ppm should use the same set of dummy points as that in the original call.

This is a method for the generic function update for the class "ppm". An object of class "ppm" describes a fitted point process model. See ppm.object) for details of this class.

update.ppm will modify the point process model specified by object according to the new arguments given, then re-fit it. The actual re-fitting is performed by the model-fitting function ppm.

If you are comparing several model fits to the same data, or fits of the same model to different data, it is strongly advisable to use update.ppm rather than trying to fit them by hand. This is because update.ppm re-fits the model in a way which is comparable to the original fit.

The arguments ... are matched to the formal arguments of ppm as follows.

First, all the named arguments in ... are matched with the formal arguments of ppm. Use name=NULL to remove the argument name from the call.

Second, any unnamed arguments in ... are matched with formal arguments of ppm if the matching is obvious from the class of the object. Thus ... may contain

  • exactly one argument of class"ppp"or"quad", which will be interpreted as the named argumentQ;
  • exactly one argument of class"formula", which will be interpreted as the named argumenttrend;
  • exactly one argument of class"interact", which will be interpreted as the named argumentinteraction;
  • exactly one argument of class"data.frame", which will be interpreted as the named argumentcovariates.

When fixdummy=FALSE, calling update.ppm is exactly the same as calling ppm with the updated arguments. However, the original and updated models are not strictly comparable (for example, their pseudolikelihoods are not strictly comparable) unless they used the same set of dummy points for the quadrature scheme. Setting fixdummy=TRUE ensures that the re-fitting will be performed using the same set of dummy points. This is highly recommended.


  • Another fitted point process model (object of class "ppm").

  • update.ppm

  # fit the stationary Poisson process
  fit <- ppm(nztrees, ~ 1)

  # fit a nonstationary Poisson process
  fitP <- update(fit, trend=~x)
  fitP <- update(fit, ~x)

  # fit a stationary Strauss process
  fitS <- update(fit, interaction=Strauss(13))
  fitS <- update(fit, Strauss(13))

  # oops, forgot the edge correction
  fitS <- update(fitS, rbord=13)

  # re-fit the model to a subset
  # of the original point pattern
  nzw <- owin(c(0,148),c(0,95))
  nzsub <- nztrees[,nzw]
  fut <- update(fitS, Q=nzsub)
  fut <- update(fitS, nzsub)

  # WARNING: the point pattern argument is called 'Q'
Documentation reproduced from package spatstat, version 1.7-11, License: GPL version 2 or newer

Community examples

Looks like there are no examples yet.