GMerrorsar

0th

Percentile

Spatial simultaneous autoregressive error model estimation by GMM

An implementation of Kelejian and Prucha's generalised moments estimator for the autoregressive parameter in a spatial model.

Keywords
spatial
Usage
GMerrorsar(formula, data = list(), listw, na.action = na.fail, zero.policy = NULL, method="nlminb", arnoldWied=FALSE, control = list(), pars, scaleU=FALSE, verbose=NULL, legacy=FALSE, se.lambda=TRUE, returnHcov=FALSE, pWOrder=250, tol.Hcov=1.0e-10) "summary"(object, correlation = FALSE, Hausman=FALSE, ...) GMargminImage(obj, lambdaseq, s2seq)
Arguments
formula
a symbolic description of the model to be fit. The details of model specification are given for lm()
data
an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.
listw
a listw object created for example by nb2listw
na.action
a function (default na.fail), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.
zero.policy
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA - causing GMerrorsar() to terminate with an error
method
default "nlminb", or optionally a method passed to optim to use an alternative optimizer
arnoldWied
default FALSE
control
A list of control parameters. See details in optim or nlminb.
pars
starting values for $lambda$ and $sigma squared$ for GMM optimisation, if missing (default), approximated from initial OLS model as the autocorrelation coefficient corrected for weights style and model sigma squared
scaleU
Default FALSE: scale the OLS residuals before computing the moment matrices; only used if the pars argument is missing
verbose
default NULL, use global option value; if TRUE, reports function values during optimization.
legacy
default FALSE - compute using the unfiltered values of the response and right hand side variables; if TRUE - compute the fitted value and residuals from the spatially filtered model using the spatial error parameter
se.lambda
default TRUE, use the analytical method described in http://econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf
returnHcov
default FALSE, return the Vo matrix for a spatial Hausman test
tol.Hcov
the tolerance for computing the Vo matrix (default=1.0e-10)
pWOrder
default 250, if returnHcov=TRUE, pass this order to powerWeights as the power series maximum limit
object, obj
gmsar object from GMerrorsar
correlation
logical; (default=FALSE), TRUE not available
Hausman
if TRUE, the results of the Hausman test for error models are reported
...
summary arguments passed through
lambdaseq
if given, an increasing sequence of lambda values for gridding
s2seq
if given, an increasing sequence of sigma squared values for gridding
Details

When the control list is set with care, the function will converge to values close to the ML estimator without requiring computation of the Jacobian, the most resource-intensive part of ML estimation.

Note that the fitted() function for the output object assumes that the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). This differs from other software, including GeoDa, which does not use knowledge of the response variable in making predictions for the fitting data.

The GMargminImage may be used to visualize the shape of the surface of the argmin function used to find lambda.

Value

A list object of class gmsar

References

Kelejian, H. H., and Prucha, I. R., 1999. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. International Economic Review, 40, pp. 509--533; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York.

Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. http://www.jstatsoft.org/v63/i18/.

See Also

optim, nlminb, errorsarlm

Aliases
  • GMerrorsar
  • residuals.gmsar
  • deviance.gmsar
  • coef.gmsar
  • fitted.gmsar
  • print.gmsar
  • summary.gmsar
  • print.summary.gmsar
  • GMargminImage
Examples
data(oldcol)
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 nb2listw(COL.nb, style="W"), method="eigen")
summary(COL.errW.eig, Hausman=TRUE)
COL.errW.GM <- GMerrorsar(CRIME ~ INC + HOVAL, data=COL.OLD,
 nb2listw(COL.nb, style="W"), returnHcov=TRUE)
summary(COL.errW.GM, Hausman=TRUE)
aa <- GMargminImage(COL.errW.GM)
levs <- quantile(aa$z, seq(0, 1, 1/12))
image(aa, breaks=levs, xlab="lambda", ylab="s2")
points(COL.errW.GM$lambda, COL.errW.GM$s2, pch=3, lwd=2)
contour(aa, levels=signif(levs, 4), add=TRUE)
COL.errW.GM1 <- GMerrorsar(CRIME ~ INC + HOVAL, data=COL.OLD,
 nb2listw(COL.nb, style="W"))
summary(COL.errW.GM1)
example(NY_data)
esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="SAR", method="eigen")
summary(esar1f)
esar1gm <- GMerrorsar(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY)
summary(esar1gm)
esar1gm1 <- GMerrorsar(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, method="Nelder-Mead")
summary(esar1gm1)
Documentation reproduced from package spdep, version 0.6-9, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.