Learn R Programming

sprm (version 1.2.2)

Sparse and Non-Sparse Partial Robust M Regression and Classification

Description

Robust dimension reduction methods for regression and discriminant analysis are implemented that yield estimates with a partial least squares alike interpretability. Partial robust M regression (PRM) is robust to both vertical outliers and leverage points. Sparse partial robust M regression (SPRM) is a related robust method with sparse coefficient estimate, and therefore with intrinsic variable selection. For binary classification related discriminant methods are PRM-DA and SPRM-DA.

Copy Link

Version

Install

install.packages('sprm')

Monthly Downloads

21

Version

1.2.2

License

GPL (>= 3)

Maintainer

Irene Hoffmann

Last Published

February 22nd, 2016

Functions in sprm (1.2.2)

biplot.sprmda

Biplot for sprmda objects of Sparse PRM discriminant analysis
sprmsCV

Cross validation method for SPRM regression models.
predict.prmda

Predict method for models of class prmda
predict.prm

Predict method for models of class prm
predict.sprm

Predict method for models of class sprm
sprms

Sparse partial robust M regression
biplot.sprm

Biplot for sprm objects
plot.prm

Plots for prm objects
biplot.prm

Biplot for prm objects
prmsCV

Cross validation method for PRM regression models.
summary.sprm

Summary of a sprm model
sprmda

Sparse and robust PLS for binary classification
sprm-package

Sparse and Non-Sparse Partial Robust M Regression and Classification
sprmdaCV

Cross validation method for sparse PRM classification models.
prms

Partial robust M regression
prmdaCV

Cross validation method for PRM classification models.
summary.sprmda

Summary of a sprmda model
summary.prm

Summary of a prm model
plot.sprm

Plots for sprm objects
prmda

Robust PLS for binary classification
summary.prmda

Summary of a prmda model
biplot.prmda

Biplot for prmda objects of PRM discriminant analysis
predict.sprmda

Predict method for models of class sprmda