sprmda(formula, data, a, eta, fun = "Hampel", probp1 = 0.95, hampelp2 = 0.975,
hampelp3 = 0.999, probp4=0.01, yweights = TRUE,
class = c("regfit", "lda"), prior = c(0.5, 0.5), center = "median", scale = "qn",
print = FALSE, numit = 100, prec = 0.01)
"Hampel"
(preferred), "Huber"
or "Fair"
.fun="Hampel"
.fun="Hampel"
.yweights=FALSE
.FALSE
. If TRUE
the variables included in each component are reported.Functions summary
, predict
and biplot
are available. Also the generic functions coefficients
, fitted.values
and residuals
can be used to extract the corresponding elements from the sprmda object.
scores=Xs%*%R
.w=sqrt(wy*wt)
.class="lda"
a robust LDA model is estimated in the SPRM score space for class="regfit"
the model ist a robust sparse PLS regression model on the binary response.sprmdaCV
data(iris)
data <- droplevels(subset(iris,iris$Species!="setosa"))
smod <- sprmda(Species~.,data, a=2, eta=0.7, class="lda")
Run the code above in your browser using DataLab