# NOT RUN {
require(stacomiR)
# launching stacomi without selecting the scheme or interface
stacomi(gr_interface=FALSE,
login_window=FALSE,
database_expected=FALSE)
# }
# NOT RUN {
#create an instance of the class
r_gew<-new("report_ge_weight")
baseODBC<-get("baseODBC",envir=envir_stacomi)
baseODBC[c(2,3)]<-rep("iav",2)
assign("baseODBC",baseODBC,envir_stacomi)
sch<-rlang::env_get(envir_stacomi, "sch")
assign("sch","iav.",envir_stacomi)
r_gew@liste<-charge(object=r_gew@liste,listechoice=c("=1",">1","tous"),label="")
# here I'm using weights when number are larger than 1 ie wet weight
# always choose a date from one year to the next eg 2010 to 2011
# as the dates are from august to august
r_gew<-choice_c(r_gew,
dc=c(6),
anneedebut="2009",
anneefin="2015",
selectedvalue=">1",
silent=FALSE)
r_gew<-connect(r_gew)
r_gew<-calcule(r_gew)
# }
# NOT RUN {
# load the dataset generated by previous lines
data("r_gew")
# the calculation will fill the slot calcdata
# A ggplot showing the trend in weight
plot(r_gew, plot.type=1)
# A plot showing both the data and the trend as recorded in the database
plot(r_gew, plot.type=2)
# Same as plot.type=1 but with size according to size of the sample,
# usefull for wet weights where weight are recorded on a number of glass eel
plot(r_gew, plot.type=3)
# }
# NOT RUN {
# First model with nls, see Guerault and Desaunay (1993)
model(r_gew,model.type="seasonal")
model(r_gew,model.type="seasonal1")
# }
Run the code above in your browser using DataLab