stats (version 3.5.0)

Normal: The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal distribution with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

mean

vector of means.

sd

vector of standard deviations.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\) otherwise, \(P[X > x]\).

Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile function, and rnorm generates random deviates.

The length of the result is determined by n for rnorm, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

For sd = 0 this gives the limit as sd decreases to 0, a point mass at mu. sd < 0 is an error and returns NaN.

Details

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density $$ f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$ where \(\mu\) is the mean of the distribution and \(\sigma\) the standard deviation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 13. Wiley, New York.

See Also

Distributions for other standard distributions, including dlnorm for the Lognormal distribution.

Examples

# NOT RUN {
require(graphics)

dnorm(0) == 1/sqrt(2*pi)
dnorm(1) == exp(-1/2)/sqrt(2*pi)
dnorm(1) == 1/sqrt(2*pi*exp(1))

## Using "log = TRUE" for an extended range :
par(mfrow = c(2,1))
plot(function(x) dnorm(x, log = TRUE), -60, 50,
     main = "log { Normal density }")
curve(log(dnorm(x)), add = TRUE, col = "red", lwd = 2)
mtext("dnorm(x, log=TRUE)", adj = 0)
mtext("log(dnorm(x))", col = "red", adj = 1)

plot(function(x) pnorm(x, log.p = TRUE), -50, 10,
     main = "log { Normal Cumulative }")
curve(log(pnorm(x)), add = TRUE, col = "red", lwd = 2)
mtext("pnorm(x, log=TRUE)", adj = 0)
mtext("log(pnorm(x))", col = "red", adj = 1)

## if you want the so-called 'error function'
erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
## (see Abramowitz and Stegun 29.2.29)
## and the so-called 'complementary error function'
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)
## and the inverses
erfinv <- function (x) qnorm((1 + x)/2)/sqrt(2)
erfcinv <- function (x) qnorm(x/2, lower = FALSE)/sqrt(2)
# }