# cancor

0th

Percentile

##### Canonical Correlations

Compute the canonical correlations between two data matrices.

Keywords
multivariate
##### Usage
cancor(x, y, xcenter = TRUE, ycenter = TRUE)
##### Arguments
x

numeric matrix ($n \times p_1$), containing the x coordinates.

y

numeric matrix ($n \times p_2$), containing the y coordinates.

xcenter

logical or numeric vector of length $p_1$, describing any centering to be done on the x values before the analysis. If TRUE (default), subtract the column means. If FALSE, do not adjust the columns. Otherwise, a vector of values to be subtracted from the columns.

ycenter

analogous to xcenter, but for the y values.

##### Details

The canonical correlation analysis seeks linear combinations of the y variables which are well explained by linear combinations of the x variables. The relationship is symmetric as ‘well explained’ is measured by correlations.

##### Value

A list containing the following components:

cor

correlations.

xcoef

estimated coefficients for the x variables.

ycoef

estimated coefficients for the y variables.

xcenter

the values used to adjust the x variables.

ycenter

the values used to adjust the x variables.

##### References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language. Wadsworth & Brooks/Cole.

Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321--327. biomet/28.3-4.321.

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley. Page506f.

qr, svd.
library(stats) # NOT RUN { ## signs of results are random pop <- LifeCycleSavings[, 2:3] oec <- LifeCycleSavings[, -(2:3)] cancor(pop, oec) x <- matrix(rnorm(150), 50, 3) y <- matrix(rnorm(250), 50, 5) (cxy <- cancor(x, y)) all(abs(cor(x %*% cxy$xcoef, y %*% cxy$ycoef)[,1:3] - diag(cxy $cor)) < 1e-15) all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15) all(abs(cor(y %*% cxy\$ycoef) - diag(5)) < 1e-15) # }