Learn R Programming

stringgaussnet (version 1.1)

getWGCNANet: Infer WGCNA network from expression data

Description

This function infers a WGCNA network from expression data. This gives a gaussian network simply by filtering on correlations between expressions of each pair of genes. Dissimilarities and modules computations are not implemented, because the main purpose is to compare with SIMoNe results.

Usage

getWGCNANet(DEGeneExpr, SoftThreshold = 8, AThreshold = 0.85, AddAnnotations = F,
	MartDataset = "hsapiens_gene_ensembl")

Arguments

DEGeneExpr
Object of class DEGeneExpr. See DEGeneExpr.default() for more details.
SoftThreshold
Soft threshold parameter (alpha) used for adjacency computation by sigmoid function. See pickWGCNAParam() for some help.
AThreshold
Threshold on adjacency score for edges inference. Generally it is 0.85.
AddAnnotations
Boolean variable indicating whether gene annotations must be added through biomaRt
MartDataset
Which mart dataset to use for querying gene annotations through biomaRt. See getMartDatasets() for some help.

Value

  • An object of class WGCNANet. See WGCNANet.default() for more details.

See Also

WGCNANet, WGCNANet.default, print.WGCNANet, summary.WGCNANet, export.WGCNANet, pickWGCNAParam, compareGaussNetworks

Examples

Run this code
# data(SpADataExpression)
# data(SpADEGenes)
# SpAData<-DEGeneExpr(t(SpADataExpression),SpADEGenes)

# NodesForSIMoNe<-rownames(SpADEGenes)[1:17]
# GaussianSpAData<-DEGeneExpr(t(SpADataExpression[NodesForSIMoNe,]),SpADEGenes[NodesForSIMoNe,])

# pickWGCNAParam(GaussianSpAData)
# GlobalWGCNANet<-getWGCNANet(GaussianSpAData)
# print(GlobalWGCNANet,5)
# summary(GlobalWGCNANet)
# plot(GlobalWGCNANet)
# export(GlobalWGCNANet,"GlobalWGCNANet",T)

# compareGaussNetworks(GlobalSIMoNeNet,GlobalWGCNANet,c("SIMoNe","WGCNA"))

Run the code above in your browser using DataLab