Learn R Programming

survmixer (version 1.3)

Design of Clinical Trials with Survival Endpoints Based on Binary Responses

Description

Sample size and effect size calculations for survival endpoints based on mixture survival-by-response model. The methods implemented can be found in Bofill, Shen & Gmez (2021) .

Copy Link

Version

Install

install.packages('survmixer')

Monthly Downloads

185

Version

1.3

License

GPL-3

Maintainer

Marta Roig

Last Published

March 31st, 2021

Functions in survmixer (1.3)

var_f

Variance computation
survw_integratef

Integrate function
survw_f

Weibull survival function
survw_derivf

Derivative Weibull survival function
inside_var

Inside variance computation
survm_effectsize

Effect size calculation for mixture survival distributions
survmixture_f

Mixture survival function
scale1_taylorf

Scale parameter computation
medianw_f

Median Weibull survival function
param_scale

Scale parameter computation
rmstw_f

Restricted mean survival times Weibull distribution
meanw_f

Mean Weibull survival function
survm_samplesize

Sample size calculation for mixture survival distributions