# NOT RUN {
data(Tinoco)
tap <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[1:2],
traits_low = plant_traits, traits_high = humm_traits, npems_lat = 4)
fit <- fit_tapnet(tap) # uses two networks for fitting!
gof_tapnet(fit)
# predict to omitted forest network's abundances:
pred1 <- predict_tapnet(fit, abuns=list("low"=plant_abun[[3]], "high"=humm_abun[[3]] ))
cor(as.vector(pred1*sum(networks[[3]])), as.vector(networks[[3]]))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab