powered by
A handy function for adding multiple lagged difference values to a data frame. Works with dplyr groups too.
dplyr
tk_augment_differences( .data, .value, .lags = 1, .differences = 1, .log = FALSE, .names = "auto" )
A tibble.
A column to have a difference transformation applied
One or more lags for the difference(s)
The number of differences to apply.
If TRUE, applies log-differences.
A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns.
Returns a tibble object describing the timeseries.
tibble
Benefits
This is a scalable function that is:
Designed to work with grouped data using dplyr::group_by()
dplyr::group_by()
Add multiple differences by adding a sequence of differences using the .lags argument (e.g. lags = 1:20)
.lags
lags = 1:20
Augment Operations:
tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
tk_augment_timeseries_signature()
tk_augment_holiday_signature() - Group-wise augmentation of holiday features
tk_augment_holiday_signature()
tk_augment_slidify() - Group-wise augmentation of rolling functions
tk_augment_slidify()
tk_augment_lags() - Group-wise augmentation of lagged data
tk_augment_lags()
tk_augment_differences() - Group-wise augmentation of differenced data
tk_augment_differences()
tk_augment_fourier() - Group-wise augmentation of fourier series
tk_augment_fourier()
Underlying Function:
diff_vec() - Underlying function that powers tk_augment_differences()
diff_vec()
# NOT RUN { library(tidyverse) library(timetk) m4_monthly %>% group_by(id) %>% tk_augment_differences(value, .lags = 1:20) # }
Run the code above in your browser using DataLab