A handy function for adding multiple lagged columns to a data frame.
Works with dplyr
groups too.
tk_augment_lags(.data, .value, .lags = 1, .names = "auto")
A tibble.
A column to have a difference transformation applied
One or more lags for the difference(s)
A vector of names for the new columns. Must be of same length as .lags
.
Returns a tibble
object describing the timeseries.
Benefits
This is a scalable function that is:
Designed to work with grouped data using dplyr::group_by()
Add multiple lags by adding a sequence of lags using
the .lags
argument (e.g. .lags = 1:20
)
Augment Operations:
tk_augment_timeseries_signature()
- Group-wise augmentation of timestamp features
tk_augment_holiday_signature()
- Group-wise augmentation of holiday features
tk_augment_slidify()
- Group-wise augmentation of rolling functions
tk_augment_lags()
- Group-wise augmentation of lagged data
tk_augment_differences()
- Group-wise augmentation of differenced data
tk_augment_fourier()
- Group-wise augmentation of fourier series
Underlying Function:
lag_vec()
- Underlying function that powers tk_augment_lags()
# NOT RUN {
library(tidyverse)
library(timetk)
m4_monthly %>%
group_by(id) %>%
tk_augment_lags(value, .lags = 1:20)
# }
Run the code above in your browser using DataLab