Learn R Programming

⚠️There's a newer version (3.0.0) of this package.Take me there.

tolerance (version 1.2.0)

Functions for Calculating Tolerance Intervals

Description

Statistical tolerance limits provide the limits between which we can expect to find a specified proportion of a sampled population with a given level of confidence. This package provides functions for estimating tolerance limits for various distributions. Plotting is also available for tolerance limits of continuous random variables.

Copy Link

Version

Install

install.packages('tolerance')

Monthly Downloads

953

Version

1.2.0

License

GPL (>= 2)

Maintainer

Derek S. Young

Last Published

February 17th, 2016

Functions in tolerance (1.2.0)

tolerance-internal

Internal Functions
uniftol.int

Uniform Tolerance Intervals
np.order

Sample Size Determination for Tolerance Limits Based on Order Statistics
DiscretePareto

Discrete Pareto Distribution
mvregtol.region

Multivariate (Multiple) Linear Regression Tolerance Regions
F1

Appell's F1 Hypergeometric Function
logistol.int

Logistic (or Log-Logistic) Tolerance Intervals
exttol.int

Weibull (or Extreme-Value) Tolerance Intervals
K.table

Tables of K-factors for Tolerance Intervals Based on Normality
norm.OC

Operating Characteristic (OC) Curves for K-Factors for Tolerance Intervals Based on Normality
diffnormtol.int

1-Sided Tolerance Limits for the Distribution of the Difference Between Two Independent Normal Random Variables
neghypertol.int

Negative Hypergeometric Tolerance Intervals
TwoParExponential

The 2-Parameter Exponential Distribution
fidpoistol.int

Fiducial-Based Tolerance Intervals for the Function of Two Poisson Rates
paretotol.int

Pareto (or Power Distribution) Tolerance Intervals
acc.samp

Acceptance Sampling
exptol.int

Exponential Tolerance Intervals
poislindtol.int

Poisson-Lindley Tolerance Intervals
laptol.int

Laplace Tolerance Intervals
normtol.int

Normal (or Log-Normal) Tolerance Intervals
dparetotol.int

Discrete Pareto Tolerance Intervals
bintol.int

Binomial Tolerance Intervals
mvtol.region

Multivariate Normal Tolerance Regions
DiffProp

Difference Between Two Proportions Distribution
ZipfMandelbrot

Zipf-Mandelbrot Distributions
bonftol.int

Approximate 2-Sided Tolerance Intervals that Control the Tails Using Bonferroni's Inequality
PoissonLindley

Discrete Poisson-Lindley Distribution
dpareto.ll

Maximum Likelihood Estimation for the Discrete Pareto Distribution
poistol.int

Poisson Tolerance Intervals
K.factor

Estimating K-factors for Tolerance Intervals Based on Normality
regtol.int

(Multiple) Linear Regression Tolerance Bounds
NegHypergeometric

The Negative Hypergeometric Distribution
nptol.int

Nonparametric Tolerance Intervals
zipftol.int

Zipf-Mandelbrot Tolerance Intervals
exp2tol.int

2-Parameter Exponential Tolerance Intervals
cautol.int

Cauchy Tolerance Intervals
zm.ll

Maximum Likelihood Estimation for Zipf-Mandelbrot Models
fidbintol.int

Fiducial-Based Tolerance Intervals for the Function of Two Binomial Proportions
nlregtol.int

Nonlinear Regression Tolerance Bounds
norm.ss

Sample Size Determination for Normal Tolerance Intervals
gamtol.int

Gamma (or Log-Gamma) Tolerance Intervals
anovatol.int

Tolerance Intervals for ANOVA
tolerance-package

Functions for Calculating Tolerance Intervals
plottol

Plotting Capabilities for Tolerance Intervals
fidnegbintol.int

Fiducial-Based Tolerance Intervals for the Function of Two Negative Binomial Proportions
npregtol.int

Nonparametric Regression Tolerance Bounds
negbintol.int

Negative Binomial Tolerance Intervals
umatol.int

Uniformly Most Accurate Upper Tolerance Limits for Certain Discrete Distributions
bayesnormtol.int

Bayesian Normal Tolerance Intervals
poislind.ll

Maximum Likelihood Estimation for the Discrete Poisson-Lindley Distribution
hypertol.int

Hypergeometric Tolerance Intervals
distfree.est

Estimating Various Quantities for Distribution-Free Tolerance Intervals