Learn R Programming

tolerance (version 1.2.0)

dpareto.ll: Maximum Likelihood Estimation for the Discrete Pareto Distribution

Description

Performs maximum likelihood estimation for the parameter of the discrete Pareto distribution.

Usage

dpareto.ll(x, theta = NULL, ...)

Arguments

x
A vector of raw data which is distributed according to a Poisson-Lindley distribution.
theta
Optional starting value for the parameter. If NULL, then the method of moments estimator is used.
...
Additional arguments passed to the mle function.

Value

See the help file for mle to see how the output is structured.

Details

The discrete Pareto distribution is a discretized of the continuous Type II Pareto distribution (also called the Lomax distribution).

References

Krishna, H. and Pundir, P. S. (2009), Discrete Burr and Discrete Pareto Distributions, Statistical Methodology, 6, 177--188.

Young, D. S., Naghizadeh Qomi, M., and Kiapour, A. (2016), Approximate Discrete Pareto Tolerance Limits for Characterizing Extremes in Count Data, submitted.

See Also

mle, DiscretePareto

Examples

Run this code
## Maximum likelihood estimation for randomly generated data
## from the discrete Pareto distribution. 

set.seed(100)

dp.data <- rdpareto(n = 500, theta = 0.2)
out.dp <- dpareto.ll(dp.data)
stats4::coef(out.dp)
stats4::vcov(out.dp)

Run the code above in your browser using DataLab