Learn R Programming

tteICE (version 1.1.1)

plot_ate: Plot estimated treatment effects

Description

This function plots the estimated treatment effect, defined as the difference in potential cumulative incidences under treated and control groups, along with pointwise confidence intervals.

Usage

plot_ate(
  fit,
  decrease = FALSE,
  conf.int = 0.95,
  xlab = "Time",
  ylim = c(-1, 1),
  xlim = NULL,
  plot.configs = list(ylab = NULL, main = NULL, lty = 1, lwd = 2, col = "black",
    add.null.line = TRUE, null.line.lty = 2, ci.lty = 5, ci.lwd = 1.5, ci.col =
    "darkgrey"),
  ...
)

Value

Plot the average treatment effect (ATE) results from a tteICE object

Arguments

fit

A fitted object returned by the function tteICE, surv.tteICE, or scr.tteICE.

decrease

A logical value indicating the type of curve difference to display. If decrease = FALSE (default), the difference in cumulative incidence functions (CIFs) is plotted. If decrease = TRUE, the difference in survival functions is plotted instead.

conf.int

Confidence level for the pointwise confidence intervals If conf.int = NULL, no confidence intervals are provided.

xlab

Label for the x-axis.

ylim

A numeric vector of length 2 specifying the limits of the y-axis. Defaults to ylim = c(-1, 1).

xlim

A numeric vector of length 2 specifying the limits of the x-axis. If xlim = NULL (default), the limits are determined automatically from the data.

plot.configs

A named list of additional plot configurations. Common entries include:

  • ylab: character, label for the y-axis (default: ylab=NULL, use the default label).

  • main: character, title for the plot (default: main=NULL, use the default label).

  • lty: line type for effect curve (default: lty=1).

  • lwd: line width for effect curve (default: lwd=2).

  • col: line color for effect curve (default: col="black").

  • add.null.line: logical, whether to draw a horizontal line at 0 (default: add.null.line=TRUE, add the null line).

  • null.line.lty: line type for horizontal line at 0 (default: null.line.lty=2.

  • ci.lty: line type for confidence interval curves (default: ci.lty=5).

  • ci.lwd: line width for confidence interval curves (default: ci.lwd=1.5).

  • ci.col: line color for confidence interval curves (default: ci.col="darkgrey").

...

Additional graphical arguments passed to function plot.default or function curve

See Also

plot.default, points, curve, plot.tteICE

Examples

Run this code
## Load data
data(bmt)
bmt = transform(bmt, d4=d2+d3)
A = as.numeric(bmt$group>1)
bmt$A = A

## simple model fitting and plotting
library(survival)
fit = tteICE(Surv(t2,d4,type = "mstate")~A, data=bmt)
plot_ate(fit)

## model fitting using competing risk data
fit1 = surv.tteICE(A, bmt$t2, bmt$d4, 'composite')

## Plot asymptotic confidence intervals based on explicit formulas
plot_ate(fit1, ylim=c(-0.4,0.4))

## Plot bootstrap confidence intervals
fit2 = surv.tteICE(A, bmt$t2, bmt$d4, 'natural', nboot=50) ## SE=0??
plot_ate(fit2, ylim=c(-0.4,0.4))

## Model with semicompeting risk data
fit3 = scr.tteICE(A, bmt$t1, bmt$d1, bmt$t2, bmt$d2, "composite")

## Plot asymptotic confidence intervals based on explicit formulas
plot_ate(fit3, ylim=c(-0.4,0.4),
         plot.configs=list(add.null.line=FALSE))

## Plot bootstrap confidence intervals
fit4 = scr.tteICE(A, bmt$t1, bmt$d1, bmt$t2, bmt$d2,
                  "composite", nboot=50)           ## SE=0??

plot_ate(fit4, ylim=c(-0.4,0.4),
         plot.configs=list(add.null.line=FALSE, lty=2, main=""))

Run the code above in your browser using DataLab