tweeDE(object, group, mc.cores = 1, pair = NULL, a = NULL, ...)
testPoissonTweedie(x, group, saveModel = FALSE, a = NULL, log = FALSE, ...)
MAplot(x, ...)
Vplot(x, ...)
"print"(x, n=6L, sort.by="pval", log2fc.cutoff=0, pval.adjust.cutoff=1, print=TRUE, ...)
"MAplot"(x, log2fc.cutoff=0, highlight=NULL, ...)
"Vplot"(x, log2fc.cutoff=0, pval.adjust.cutoff=1, highlight=NULL, ylab=expression(paste(-log[10], " Raw P-value")), ...)
data.frame
or a matrix
of RNA-seq counts.
mc.cores=1
is not changed,
all available cores will be used.
pval
), which is the default setting, or
by absolute log2 fold-change (log2fc
).
points()
plotting function in order to highlight
genes in the MA or volcano plots. A component called genes
is expected to
have the identifiers of the genes to be higlighted.
tweeDE
in the case of print
and vector of count data in the case of testPoissonTweedie
.
A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie family. Environmetrics 22, pages 152-164. P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.
normalizeCounts
mlePoissonTweedie
# Generate a random matrix of counts
counts <- matrix(rPT(n = 1000, a = 0.5, mu = 10, D = 5), ncol = 40)
# Test for differences between the two groups
tweeDE(counts, group = rep(c(1,2),20))
Run the code above in your browser using DataLab