randomVarImpsRFplot(randomImportances, forest,
whichImp = "impsUnscaled", nvars = NULL,
show.var.names = FALSE, vars.highlight = NULL,
main = NULL, screeRandom = TRUE,
lwdBlack = 1.5,
lwdRed = 2,
lwdLightblue = 1,
cexPoint = 1,
overlayTrue = FALSE,
xlab = NULL,
ylab = NULL, ...)randomVarImpsRFimportances = TRUE.impsUnscaled,
impsScaled, impsGini, that correspond, respectively, to
the (unscaled) mean decrease in accuracy, the scaled mean decrease
in accuracy, and cex argument for the points for the
importances from the original data set.xlab).ylab).numrandom where used when
randomVarImpsRF was called to obtain the random
importances.vars.highlight, these will be shown with a vertical blue
segment. Diaz-Uriarte, R. , Alvarez de Andres,
S. (2005) Variable selection from random forests: application to gene
expression
data. Tech. report.
randomForest,
varSelRF,
varSelRFBoot,
varSelImpSpecRF,
randomVarImpsRFx <- matrix(rnorm(45 * 30), ncol = 30)
x[1:20, 1:2] <- x[1:20, 1:2] + 2
cl <- factor(c(rep("A", 20), rep("B", 25)))
rf <- randomForest(x, cl, ntree = 200, importance = TRUE)
rf.rvi <- randomVarImpsRF(x, cl,
rf,
numrandom = 20,
usingCluster = FALSE)
randomVarImpsRFplot(rf.rvi, rf)Run the code above in your browser using DataLab