# NOT RUN {
#' ## ---- toy example ----
## sample data
# setting seed for reproducibility
set.seed(123)
m <- 7
# number of observations
n <- m*m
# number of SVC
p <- 3
# sample data
y <- rnorm(n)
X <- matrix(rnorm(n*p), ncol = p)
# locations on a regular m-by-m-grid
locs <- expand.grid(seq(0, 1, length.out = m),
seq(0, 1, length.out = m))
## preparing for maximum likelihood estimation (MLE)
# controls specific to MLE
control <- SVC_mle_control(
# initial values of optimization
init = rep(0.1, 2*p+1),
# using profile likelihood
profileLik = TRUE
)
# controls specific to optimization procedure, see help(optim)
opt.control <- list(
# number of iterations (set to one for demonstration sake)
maxit = 1,
# tracing information
trace = 6
)
## starting MLE
fit <- SVC_mle(y = y, X = X, locs = locs,
control = control,
optim.control = opt.control)
## output: convergence code equal to 1, since maxit was only 1
summary(fit)
## plot residuals
# only QQ-plot
plot(fit, which = 2)
# all three plots next to each other
oldpar <- par(mfrow = c(1, 3))
plot(fit)
par(oldpar)
# }
Run the code above in your browser using DataLab