Learn R Programming

⚠️There's a newer version (0.3.5) of this package.Take me there.

varycoef (version 0.3.0)

Modeling Spatially Varying Coefficients

Description

Implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) ). Covariance tapering (Furrer et al. (2006) ) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) ).

Copy Link

Version

Install

install.packages('varycoef')

Monthly Downloads

313

Version

0.3.0

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Jakob Dambon

Last Published

January 13th, 2021

Functions in varycoef (0.3.0)

IC.SVC_mle

Conditional Akaike's and Bayesian Information Criteria
Lq

\(L^q\) Norm Penalty
SVC_mle

MLE of SVC model
SCAD

Smoothly Clipped Absolute Deviation Penalty
SVC_mle_control

Set Parameters for SVC_mle
SVC_selection_control

SVC Selection Parameters
coef.SVC_mle

Extact Mean Effects
cov_par

SVC_selection

SVC Model Selection
fullSVC_reggrid

Sample Function for SVCs
logLik.SVC_mle

Extact the Likelihood
d.Lq

Derivative of \(L^q\) Norm Penalty
print.summary.SVC_mle

Printing Method for summary.SVC_mle
nlocs

residuals.SVC_mle

Extact Model Residuals
print.SVC_mle

Print Method for SVC_mle
predict.SVC_mle

Prediction of SVCs (and response variable)
d.SCAD

Derivative of Smoothly Clipped Absolute Deviation Penalty
fitted.SVC_mle

Extact Model Fitted Values
summary.SVC_mle

Summary Method for SVC_mle
varycoef

varycoef: Modeling Spatially Varying Coefficients
house

Lucas County House Price Data
nobs.SVC_mle

Extact Number of Observations
plot.SVC_mle

Plotting Residuals of SVC_mle model