Learn R Programming

⚠️There's a newer version (0.3.5) of this package.Take me there.

varycoef (version 0.3.4)

Modeling Spatially Varying Coefficients

Description

Implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) ). Covariance tapering (Furrer et al. (2006) ) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) ). The package and its capabilities are described in (Dambon et al. (2021c) ).

Copy Link

Version

Install

install.packages('varycoef')

Monthly Downloads

577

Version

0.3.4

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Jakob Dambon

Last Published

September 17th, 2022

Functions in varycoef (0.3.4)

cov_par

Extact Covariance Parameters
coef.SVC_mle

Extact Mean Effects
SVC_selection

SVC Model Selection
SVC_selection_control

SVC Selection Parameters
IC.SVC_mle

Conditional Akaike's and Bayesian Information Criteria
GLS_chol

GLS Estimate using Cholesky Factor
check_cov_lower

Check Lower Bound of Covariance Parameters
SVC_mle_control

Set Parameters for SVC_mle
SVCdata

Sampled SVC Data
print.SVC_mle

Print Method for SVC_mle
print.summary.SVC_mle

Printing Method for summary.SVC_mle
nobs.SVC_mle

Extract Number of Observations
init_bounds_optim

Setting of Optimization Bounds and Initial Values
plot.SVC_mle

Plotting Residuals of SVC_mle model
fitted.SVC_mle

Extact Model Fitted Values
logLik.SVC_mle

Extact the Likelihood
predict.SVC_mle

Prediction of SVCs (and response variable)
nlocs

Extract Number of Unique Locations
house

Lucas County House Price Data
summary.SVC_mle

Summary Method for SVC_mle
residuals.SVC_mle

Extact Model Residuals
varycoef

varycoef: Modeling Spatially Varying Coefficients
sample_SVCdata

Sample Function for GP-based SVC Model for Given Locations
SVC_mle

MLE of SVC model