formulaMultilinear(nloc=2, max.level=2, max.dom=2,
e.unique=FALSE)
reconstructLinearEffects(noia.multilinear)
startingValues(phen, genZ, reference="noia", max.level=2,
max.dom=2, fast=FALSE, e.unique=FALSE, start.algo="linear",
bilinear.steps=NULL, ...)
startingValuesReg(reg, max.level=2, max.dom=2, e.unique=FALSE,
nloc=NULL)
startingValuesNothing(nloc, max.level=2, max.dom=2,
e.unique=FALSE)
startingValuesLinear(noia.linear, max.level=2, max.dom=2,
e.unique=FALSE, e.init=TRUE)
startingValuesMultilinear(noia.multilinear, max.level=2,
max.dom=2, e.unique=FALSE)
bilinearStep(form, X, phen, marginal, interactions, ...)
FALSE
, all epistatic effects are set to 0)."linear"
, "multilinear"
, "subset"
or "bilinear"
.bilinearStep
function. Ignored if start.algo
is not "bilinear"
."noia.multilinear"
provided
by multilinearRegression
."noia.linear"
provided by
linearRegression
."noia.linear"
or "noia.multilinear"
.formulaMultilinear
.Z
matrix and a S
matrix. Can be provided directly by genZ2X
.marginal
, together accounting for all genetic effects.nls
.nls
works, the multilinear formula has to follow a specific form, with
specific names for parameters. formulaMultilinear
provides this
formula.
reconstructLinearEffects
generates a vector of genetic effects,
including general interaction effects (e.g. Additive by Additive etc) from
the result of a multilinear regression. This is necessary for further
computation of the Genotype-to-Phenotype map.
Finally, startingValues
provide a vector of starting values for the
multilinear regression, from the result of a linear regression (through the
function startingValuesLinear
) or a simplier multilinear regression
(through StartingValuesMultilinear
). startingValuesNothing
generates a list of starting values and sets all of them to 0. Starting
values are necessary to ensure the convergence of the non-linearRegression
(nls
).Le Rouzic A, Alvarez-Castro JM. (2008). Estimation of genetic effects and genotype-phenotype maps. Evolutionary Bioinformatics, 4.
multilinearRegression
, GPmap
.set.seed(123456789)
map <- c(0.25, -0.75, -0.75, -0.75, 2.25, 2.25, -0.75, 2.25, 2.25)
pop <- simulatePop(map, N=500, sigmaE=0.2, type="F2")
linear <- linearRegression(phen=pop$phen, gen=pop[2:3])
multilinear <- multilinearRegression(phen=pop$phen,
gen=cbind(pop$Loc1, pop$Loc2))
formulaMultilinear(nloc=2)
startingValuesReg(linear)
reconstructLinearEffects(multilinear)
Run the code above in your browser using DataLab