classif.knn.fd(fdataobj, group,
knn=seq(3, floor(min(table(group))/3),by=2),metric=metric.lp,...)fdata class object.metric.lpfdata class object.knn.opt.knn.opt.knn.classif.knn.fd.classif.knn.fd to estimate the number of k nearest neighbors to classify a sample of best practice. In the training sample is known for each data functional group (group). You can use different metric functions or types of distance metric by changing the parameters: p and w of metric.lp function.predict.classif.fddata(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]
out=classif.knn.fd(mlearn,glearn)
summary.classif.fd(out)Run the code above in your browser using DataLab