Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
collaboration_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(15, 20, 25)
)collab_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(15, 20, 25)
)
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization". To run the analysis on the total
instead of splitting by an HR attribute, supply NULL (without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value for more information.
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
A different output is returned depending on the value passed to the return argument:
"plot": 'ggplot' object. A stacked bar plot for the metric.
"table": data frame. A summary table for the metric.
The metric Collaboration_hours is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Visualization: 
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar_asis(),
create_bar(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_line_asis(),
create_line(),
create_period_scatter(),
create_rank(),
create_sankey(),
create_scatter(),
create_stacked(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_network_plot(),
hr_trend(),
hrvar_count(),
internal_network_plot(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_quality(),
meeting_rank(),
meeting_summary(),
meeting_trend(),
meetingtype_dist_ca(),
meetingtype_dist_mt(),
meetingtype_dist(),
meetingtype_summary(),
mgrcoatt_dist(),
mgrrel_matrix(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend(),
period_change(),
workloads_dist(),
workloads_fizz(),
workloads_line(),
workloads_rank(),
workloads_summary(),
workloads_trend(),
workpatterns_area(),
workpatterns_rank()
Other Collaboration: 
collaboration_area(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend()
# NOT RUN {
# Return plot
collaboration_dist(sq_data, hrvar = "Organization")
# Return summary table
collaboration_dist(sq_data, hrvar = "Organization", return = "table")
# }
Run the code above in your browser using DataLab