Returns two side-by-side scatter plots representing two selected metrics, using colour to map an HR attribute and size to represent number of employees. Returns a faceted scatter plot by default, with additional options to return a summary table.
create_period_scatter(
  data,
  hrvar = "Organization",
  metric_x = "Multitasking_meeting_hours",
  metric_y = "Meeting_hours",
  before_start = min(as.Date(data$Date, "%m/%d/%Y")),
  before_end,
  after_start = as.Date(before_end) + 1,
  after_end = max(as.Date(data$Date, "%m/%d/%Y")),
  before_label = "Period 1",
  after_label = "Period 2",
  mingroup = 5,
  return = "plot"
)A Standard Person Query dataset in the form of a data frame.
HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
Character string containing the name of the metric, e.g. "Collaboration_hours"
Character string containing the name of the metric, e.g. "Collaboration_hours"
Start date of "before" time period in YYYY-MM-DD
End date of "before" time period in YYYY-MM-DD
Start date of "after" time period in YYYY-MM-DD
End date of "after" time period in YYYY-MM-DD
String to specify a label for the "before" period. Defaults to "Period 1".
String to specify a label for the "after" period. Defaults to "Period 2".
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
Returns a 'ggplot' object showing two scatter plots side by side representing the two periods.
This is a general purpose function that powers all the functions in the package that produce faceted scatter plots.
Other Visualization: 
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_dist(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar_asis(),
create_bar(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_line_asis(),
create_line(),
create_rank(),
create_sankey(),
create_scatter(),
create_stacked(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_network_plot(),
hr_trend(),
hrvar_count(),
internal_network_plot(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_quality(),
meeting_rank(),
meeting_summary(),
meeting_trend(),
meetingtype_dist_ca(),
meetingtype_dist_mt(),
meetingtype_dist(),
meetingtype_summary(),
mgrcoatt_dist(),
mgrrel_matrix(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend(),
period_change(),
workloads_dist(),
workloads_fizz(),
workloads_line(),
workloads_rank(),
workloads_summary(),
workloads_trend(),
workpatterns_area(),
workpatterns_rank()
Other Flexible: 
create_bar_asis(),
create_bar(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_hist(),
create_line_asis(),
create_line(),
create_rank(),
create_sankey(),
create_scatter(),
create_stacked(),
create_trend(),
period_change()
Other Time-series: 
IV_by_period(),
create_line_asis(),
create_line(),
create_trend(),
period_change()
# NOT RUN {
# Return plot
create_period_scatter(sq_data,
                      hrvar = "LevelDesignation",
                      before_start = "2019-11-03",
                      before_end = "2019-12-31",
                      after_start = "2020-01-01",
                      after_end = "2020-01-26")
# Return a summary table
create_period_scatter(sq_data, before_end = "2019-12-31", return = "table")
# }
Run the code above in your browser using DataLab