Uses the Hourly Collaboration query to produce an area plot of Emails sent and IMs sent attended by hour of the day.
workpatterns_area(
  data,
  hrvar = "Organization",
  mingroup = 5,
  signals = c("email", "IM"),
  return = "plot",
  values = "percent",
  start_hour = "0900",
  end_hour = "1700"
)A data frame containing data from the Hourly Collaboration query.
HR Variable by which to split metrics. Accepts a character
vector, defaults to "Organization" but accepts any character vector, e.g.
"LevelDesignation"
Numeric value setting the privacy threshold / minimum group size, defaults to 5.
Character vector to specify which collaboration metrics to use:
a combination of signals, such as c("email", "IM") (default)
"email" for emails only
"IM" for Teams messages only
"unscheduled_calls" for Unscheduled Calls only
"meetings" for Meetings only
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value for more information.
Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
"percent": percentage of signals divided by total signals (default)
"abs": absolute count of signals
A character vector specifying starting hours, e.g. "0900"
A character vector specifying starting hours, e.g. "1700"
A different output is returned depending on the value passed to the return
argument:
"plot": ggplot object. An overlapping area plot (default).
"table": data frame. A summary table.
Other Visualization: 
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_dist(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar_asis(),
create_bar(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_line_asis(),
create_line(),
create_period_scatter(),
create_rank(),
create_sankey(),
create_scatter(),
create_stacked(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_network_plot(),
hr_trend(),
hrvar_count(),
internal_network_plot(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_quality(),
meeting_rank(),
meeting_summary(),
meeting_trend(),
meetingtype_dist_ca(),
meetingtype_dist_mt(),
meetingtype_dist(),
meetingtype_summary(),
mgrcoatt_dist(),
mgrrel_matrix(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend(),
period_change(),
workloads_dist(),
workloads_fizz(),
workloads_line(),
workloads_rank(),
workloads_summary(),
workloads_trend(),
workpatterns_rank()
Other Working Patterns: 
flex_index(),
identify_shifts_wp(),
identify_shifts(),
plot_flex_index(),
workpatterns_classify_bw(),
workpatterns_classify_pav(),
workpatterns_classify(),
workpatterns_hclust(),
workpatterns_rank(),
workpatterns_report()
Other Working Patterns: 
flex_index(),
identify_shifts_wp(),
identify_shifts(),
plot_flex_index(),
workpatterns_classify_bw(),
workpatterns_classify_pav(),
workpatterns_classify(),
workpatterns_hclust(),
workpatterns_rank(),
workpatterns_report()
# NOT RUN {
# Return visualization of percentage distribution
workpatterns_area(em_data, return = "plot", values = "percent")
# Return visualization of absolute values
workpatterns_area(em_data, return = "plot", values = "abs")
# Return summary table
workpatterns_area(em_data, return = "table")
# }
Run the code above in your browser using DataLab