ddjnonparam_ews
is used to compute nonparametrically
conditional variance, drift, diffusion and jump intensity
in a timeseries. It also interpolates to obtain the
evolution of the nonparametric statistics in time.
ddjnonparam_ews(timeseries, bandwidth = 0.6, na = 500, logtransform = TRUE, interpolate = FALSE)
ddjnonparam_ews
returns an object with elements:x
over avec
.dx
over avec
.total
variance - jumping intensity
vs avec
.avec
.x
data over Tvec1
.dx
over
Tvec1
.Tvec1
.Tvec1
.ddjnonparam_ews
returns a first plot
with the original timeseries and the residuals after
first-differencing. A second plot shows the nonparametric
conditional variance, total variance, diffusion and jump
intensity over the data, and a third plot the same
nonparametric statistics over time.
Arguments:
Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' PLoS ONE 7(7): e41010. doi:10.1371/journal.pone.0041010
generic_ews
; ddjnonparam_ews
;
bdstest_ews
;
sensitivity_ews
;surrogates_ews
;
ch_ews
; movpotential_ews
;
livpotential_ews
data(foldbif)
output<-ddjnonparam_ews(foldbif,bandwidth=0.6,na=500,
logtransform=TRUE,interpolate=FALSE)
Run the code above in your browser using DataLab