surrogates_ews
is used to estimate distributions of
trends in statistical moments from different surrogate
timeseries generated after fitting an ARMA(p,q) model on
the data. The trends are estimated by the nonparametric
Kendall tau correlation coefficient and can be compared to
the trends estimated in the original timeseries to produce
probabilities of false positives.
surrogates_ews(timeseries, indicator = c("ar1", "sd", "acf1", "sk", "kurt", "cv", "returnrate", "densratio"), winsize = 50, detrending = c("no", "gaussian", "loess", "linear", "first-diff"), bandwidth = NULL, span = NULL, degree = NULL, boots = 100, logtransform = FALSE, interpolate = FALSE)
ar1
autoregressive coefficient of a first order AR model,
sd
standard deviation, acf1
autocorrelation
at first lag, sk
skewness, kurt
kurtosis,
cv
coeffcient of variation, returnrate
, and
densratio
density ratio of the power spectrum at
low frequencies over high frequencies.gaussian
filtering, loess
fitting,
linear
detrending and first-diff
erencing.
Default is no
detrending.bw.nrd0
(Default).surrogates_ews
returns a matrix that contains:surrogates_ews
returns a plot with the
distribution of the surrogate Kendall tau estimates and the
Kendall tau estimate of the original series. Vertical lines
indicate the 5% and 95% significance levels.
Arguments:
Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' PLoS ONE 7(7): e41010. doi:10.1371/journal.pone.0041010
generic_ews
; ddjnonparam_ews
;
bdstest_ews
; sensitivity_ews
;
surrogates_ews
; ch_ews
;
movpotential_ews
;
livpotential_ews
data(foldbif)
output=surrogates_ews(foldbif,indicator='sd',winsize=50,detrending='gaussian',
bandwidth=10,boots=200,logtransform=FALSE,interpolate=FALSE)
Run the code above in your browser using DataLab