data(ITS1, ITS2)
data <- list(ITS1=ITS1, ITS2=ITS2)
# show percent variation for only ITS1 with default methods
dissim.pvar.plot(data=list(ITS1=ITS1))
# show clustering for ITS1 and ITS2 for set methods
dissim.clust.plot(data=data, is.OTU=TRUE, stand.method=NULL,
dist.methods=c("morisita", "bray"),
clust.methods=c("average", "centroid"))
dissim.ord.plot(data=data, is.OTU=TRUE, stand.method="total",
dist.method="bray")
# dissim.alleig.plot returns a ggplot2 object:
my.eig.plot <- dissim.alleig.plot(data)
class(my.eig.plot) # returns "gg" "ggplot"
my.eig.plot # view the plot
# update the title, then view the updated plot
my.eig.plot <- my.eig.plot + ggtitle("My New Title")
# update ggplot theme
require("grid")
new_theme <-RAM.color()
my.eig.plot <- my.eig.plot + new_theme
my.eig.plot
# save an image (named file.pdf) with GOF values for ITS1 and ITS2,
using # default methods
dissim.GOF.plot(data=data, file="~/Documents/my/file")Run the code above in your browser using DataLab