Usage
dissim.clust(elem, is.OTU=TRUE, stand.method=NULL,
dist.method="morisita", clust.method="average")
dissim.eig(elem, is.OTU=TRUE, stand.method=NULL,
dist.method="morisita")
dissim.ord(elem, is.OTU=TRUE, stand.method=NULL,
dist.method="morisita", k=NULL)
dissim.GOF(elem, is.OTU=TRUE, stand.method=NULL,
dist.method="morisita")
dissim.tree(elem, is.OTU=TRUE, stand.method=NULL,
dist.method="morisita", clust.method="average")
dissim.pvar(elem, is.OTU=TRUE, stand.method=NULL,
dist.method="morisita")Arguments
elem
an ecology data set that can be an OTU table or a taxonomy
abundance table. See RAM.input.formatting for details. is.OTU
logical, whether the ecology data sets are OTU tables or taxonomy
abundance matrices. See RAM.input.formatting for details. stand.method
optional, if is.null, the standardization method for data
transforamtion; must be one of the following: "total", "max",
"frequency", "normalize", "range", "standardize", "pa",
"chi.square", "hellinger", "log".
See also
dist.method
the dissimilarity index to be used; one of "manhattan",
"euclidean", "canberra", "bray",
"kulczynski", "jaccard", "gower",
"altGower","morisita
k
the number of dimensions desired. If NULL, the maximum value
will be calculated and used.
clust.method
the method used for clustering the data. Must be one of "ward",
"single", "complete", "average", "mcquitty", "median", or "centroid".
See also