### simple examples:
H=holdout(1:10,ratio=2,internal=TRUE,mode="order")
print(H)
H=holdout(1:10,ratio=2/3,internal=TRUE,mode="order")
print(H)
H=holdout(1:10,ratio=2/3,internal=TRUE,mode="random")
print(H)
H=holdout(1:10,ratio=2/3,internal=TRUE,mode="random")
print(H)
### classification example
data(iris)
# random stratified holdout
H=holdout(iris$Species,ratio=2/3,internal=TRUE)
print(summary(iris[H$itr,]))
print(summary(iris[H$val,]))
print(summary(iris[H$tr,]))
print(summary(iris[H$ts,]))
M=fit(Species~.,iris[H$tr,],model="dt") # training data only
P=predict(M,iris[H$ts,]) # test data
print(mmetric(iris$Species[H$ts],P,"CONF"))
### regression example with incremental training
ts=c(1,4,7,2,5,8,3,6,9,4,7,10,5,8,11,6,9)
d=CasesSeries(ts,c(1,2,3))
for(b in 1:3) # iterations
{
H=holdout(d$y,ratio=4,mode="incremental",iter=b)
print(H)
M=fit(y~.,d[H$tr,],model="mlpe",search=2)
P=predict(M,d[H$ts,])
cat("batch :",b,"TR size:",length(H$tr),"TS size:",
length(H$ts),"mae:",mmetric(d$y[H$ts],P,"MAE"),"")
}
Run the code above in your browser using DataLab