mrf.joint
uses an MCMC algorithm to fit one-dimensional Markov random field models to multiple ChIP-seq datasets.
These datasets could contain technical and biological replicates. If a single experiment is given, then the function mrf
is used.
The emission distribution of the enriched state (signal) could be either Poisson or Negative Binomial (NB), while the emission distribution of the non-enriched state (background) could be either a Zero-inflated Poisson (ZIP) or a Zero-inflated Negative Binomial (ZINB).
mrf.joint(data, method = NULL, rep.vec = NULL, p.vec = NULL, exp.label = NULL, Niterations = 10000, Nburnin = 5000, Poisprior = NULL, NBprior = NULL, PoisNBprior = NULL, var.NB = NULL, var.q=NULL, parallel=TRUE)
mrf
will be used.
clusterApplyLB
function in package parallel
. Default value is TRUE.mrf.joint, enrich.mrf
data(p300cbp.200bp)
exp.label=c("CBPT0", "CBPT301", "CBPT302", "p300T0",
"p300T301", "p300T302", "WangCBP", "Wangp300")
CBPT30=list()
CBPT30$region=p300cbp.200bp$region[200001:210000,]
CBPT30$count=p300cbp.200bp$count[200001:210000,2:3]
## Not run:
# NBfit.simple<-mrf.joint(CBPT30, method="NB", rep.vec=c(1,1),
# p.vec=c(1,1), exp.label=exp.label[c(2,3)])
#
# ## Joint analysis combining technical replicates
# ## (CBPT301,CBPT302) and (p300T301, p300T302)
# p300cbp.mrf<-mrf.joint(p300cbp.200bp, method="NB",
# rep.vec=c(1,2,2,3,4,4,5,6), p.vec=c(1,2,2,3,4,4,5,6), exp.label=exp.label)
#
# ## Joint analysis, assuming the same p for two different proteins
# p300cbp.mrf.p<-mrf.joint(p300cbp.200bp, method="NB",
# rep.vec=c(1,2,2,3,4,4,5,6), p.vec=c(1,2,2,1,2,2,3,3), exp.label=exp.label)
# ## End(Not run)
Run the code above in your browser using DataLab