plot.Mclust:
Plot Model-Based Clustering Results
Description
Plot model-based clustering results: BIC, classification, uncertainty and
(for univariate and bivariate data) density.
Usage
"plot"(x, what = c("BIC", "classification", "uncertainty", "density"), dimens = NULL, xlab = NULL, ylab = NULL, ylim = NULL, addEllipses = TRUE, main = TRUE, ...)
Arguments
what
The type of graph requested:
By default, all the above graphs are produced. See the description below.
dimens
A vector of length one or two giving the integer dimensions of the
desired coordinate projections for multivariate data in case of
"classification"
or "uncertainty"
plots.
xlab, ylab
Optional labels for the x-axis and the y-axis.
ylim
Optional limits for the vertical axis of the BIC plot.
addEllipses
A logical indicating whether or not to add ellipses with axes corresponding
to the within-cluster covariances in case of "classification"
or
"uncertainty"
plots.
main
A logical or NULL
indicating whether or not to add a title
to the plot identifying the dimensions used.
...
Other graphics parameters.
Value
Model-based clustering plots:
References
C. Fraley and A. E. Raftery (2002).
Model-based clustering, discriminant analysis, and density estimation.
Journal of the American Statistical Association 97:611-631. C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012).
mclust Version 4 for R: Normal Mixture Modeling for Model-Based
Clustering, Classification, and Density Estimation.
Technical Report No. 597, Department of Statistics, University of Washington.Details
For more flexibility in plotting, use mclust1Dplot
,
mclust2Dplot
, surfacePlot
, coordProj
, or
randProj
.
Examples
Run this codeprecipMclust <- Mclust(precip)
plot(precipMclust)
faithfulMclust <- Mclust(faithful)
plot(faithfulMclust)
irisMclust <- Mclust(iris[,-5])
plot(irisMclust)
Run the code above in your browser using DataLab