Learn R Programming

AnaCoDa (version 0.1.4.4)

Analysis of Codon Data under Stationarity using a Bayesian Framework

Description

Is a collection of models to analyze genome scale codon data using a Bayesian framework. Provides visualization routines and checkpointing for model fittings. Currently published models to analyze gene data for selection on codon usage based on Ribosome Overhead Cost (ROC) are: ROC (Gilchrist et al. (2015) ), and ROC with phi (Wallace & Drummond (2013) ). In addition 'AnaCoDa' contains three currently unpublished models. The FONSE (First order approximation On NonSense Error) model analyzes gene data for selection on codon usage against of nonsense error rates. The PA (PAusing time) and PANSE (PAusing time + NonSense Error) models use ribosome footprinting data to analyze estimate ribosome pausing times with and without nonsense error rate from ribosome footprinting data.

Copy Link

Version

Install

install.packages('AnaCoDa')

Monthly Downloads

310

Version

0.1.4.4

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Cedric Landerer

Last Published

September 15th, 2020

Functions in AnaCoDa (0.1.4.4)

calculateSCUO

calculates the synonymous codon usage order (SCUO)
acfMCMC

Autocorrelation function for the likelihood or posterior trace
codonToAA

translates codon to amino acid
AAToCodon

Amino Acid to codon set
acfCSP

Plots ACF for codon specific parameter traces
addObservedSynthesisRateSet

Add gene observed synthesis rates
aminoAcids

Amino acids
codons

Codons
calculateMarginalLogLikelihood

Calculates the marginal log-likelihood for a set of parameters
findOptimalCodon

Find and return list of optimal codons
getCAI

Calculate the Codon Adaptation Index
getCAIweights

Calculate the CAI codon weigths for a reference genome
getLogLikelihoodTrace

getLogLikelihoodTrace
getCSPEstimates

Return Codon Specific Paramters (or write to csv) estimates as data.frame
getEstimatedMixtureAssignmentForGene

getEstimatedMixtureAssignmentForGene
getCodonCounts

Get Codon Counts For all Amino Acids
getEstimatedMixtureAssignmentProbabilitiesForGene

getEstimatedMixtureAssignmentProbabilitiesForGene
getNoiseOffsetPosteriorMean

getNoiseOffsetPosteriorMean
getNcAA

Calculate the Effective Number of Codons for each Amino Acid
convergence.test

Convergence Test
getAdaptiveWidth

getAdaptiveWidth
geomMean

Take the geometric mean of a vector
getExpressionEstimates

Returns the estimated phi posterior for a gene
fixDEta

fixDEta
getSynthesisRatePosteriorMeanForGene

getSynthesisRatePosteriorMeanForGene
getGroupList

getGroupList
getCodonCountsForAA

Get Codon Counts For a specific Amino Acid
getLogPosteriorMean

getLogPosteriorMean
getSynthesisRatePosteriorVarianceForGene

getSynthesisRatePosteriorVarianceForGene
initSelectionCategories

initSelectionCategories
getNoiseOffsetVariance

getNoiseOffsetVariance
getTraceObject

getTraceObject
getObservedSynthesisRateSet

Get gene observed synthesis rates
getLogPosteriorTrace

getLogPosteriorTrace
getMixtureAssignmentEstimate

Returns mixture assignment estimates for each gene
getStepsToAdapt

getStepsToAdapt
getCodonSpecificPosteriorMeanForCodon

getCodonSpecificPosteriorMeanForCodon
fixDM

fixDM
getNames

Gene Names of Genome
initializeCovarianceMatrices

Initialize Covariance Matrices
initMutationCategories

initMutationCategories
initializeModelObject

Model Initialization
getSynthesisRate

getSynthesisRate
plot.Rcpp_FONSEModel

Plot Model Object
plot.Rcpp_FONSEParameter

Plot Parameter
setThinning

setThinning
initializeParameterObject

Initialize Parameter
getThinning

getThinning
getNc

Calculate the Effective Number of Codons
getCodonSpecificPosteriorVarianceForCodon

getCodonSpecificPosteriorVarianceForCodon
fixSphi

fixSphi
getCodonSpecificQuantilesForCodon

getCodonSpecificQuantilesForCodon
simulateGenome

simulateGenome
initializeSynthesisRateByGenome

initializeSynthesisRateByGenome
initializeSynthesisRateByList

initializeSynthesisRateByList
plotAcceptanceRatios

Plot Acceptance ratios
plotCodonSpecificParameters

Plot Codon Specific Parameter
writeParameterObject

Write Parameter Object to a File
initializeMCMCObject

Initialize MCMC
initializeGenomeObject

Genome Initialization
getTrace

extracts an object of traces from a parameter object.
plot.Rcpp_ROCParameter

Plot Parameter
plot.Rcpp_Trace

Plot Trace Object
setSamples

setSamples
getSamples

getSamples
getSelectionCoefficients

Calculate Selection coefficients
setRestartFileSettings

setRestartFileSettings
setRestartSettings

Set Restart Settings
setStepsToAdapt

setStepsToAdapt
getStdDevSynthesisRatePosteriorMean

getStdDevSynthesisRatePosteriorMean
getStdDevSynthesisRateVariance

getStdDevSynthesisRateVariance
initializeSynthesisRateByRandom

initializeSynthesisRateByRandom
loadMCMCObject

Load MCMC Object
length.Rcpp_Genome

Length of Genome
plot.Rcpp_ROCModel

Plot Model Object
plot.Rcpp_MCMCAlgorithm

Plot MCMC algorithm
loadParameterObject

Load Parameter Object
readPhiValue

readPhiValue
setAdaptiveWidth

setAdaptiveWidth
setGroupList

setGroupList
summary.Rcpp_Genome

Summary of Genome
runMCMC

Run MCMC
writeMCMCObject

Write MCMC Object