Learn R Programming

DRIMSeq (version 1.0.2)

dmFit: Estimate proportions in Dirichlet-multinomial model

Description

Maximum likelihood estimates of genomic feature (for instance, transcript, exon, exonic bin) proportions in full Dirichlet-multinomial model used in differential splicing or sQTL analysis. Full model estimation means that proportions are estimated for every group/condition separately.

Usage

dmFit(x, ...)
"dmFit"(x, dispersion = "genewise_dispersion", prop_mode = "constrOptimG", prop_tol = 1e-12, verbose = 0, BPPARAM = BiocParallel::MulticoreParam(workers = 1))
"dmFit"(x, dispersion = "genewise_dispersion", prop_mode = "constrOptimG", prop_tol = 1e-12, verbose = 0, BPPARAM = BiocParallel::MulticoreParam(workers = 1))

Arguments

x
dmDSdispersion or dmSQTLdispersion object.
...
Other parameters that can be defined by methods using this generic.
dispersion
Character defining which dispersion should be used for fitting. Possible values "genewise_dispersion" or "common_dispersion".
prop_mode
Optimization method used to estimate proportions. Possible values "constrOptim" and "constrOptimG".
prop_tol
The desired accuracy when estimating proportions.
verbose
Numeric. Definie the level of progress messages displayed. 0 - no messages, 1 - main messages, 2 - message for every gene fitting.
BPPARAM
Parallelization method used by bplapply.

Value

Returns a dmDSfit or dmSQTLfit object.

See Also

data_dmDSdata, data_dmSQTLdata, plotFit, dmDispersion, dmTest

Examples

Run this code
###################################
### Differential splicing analysis
###################################
# If possible, use BPPARAM = BiocParallel::MulticoreParam() with more workers

d <- data_dmDSdata

### Filtering
# Check what is the minimal number of replicates per condition 
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3, 
 min_samps_feature_prop = 0)

### Calculate dispersion
d <- dmDispersion(d, BPPARAM = BiocParallel::SerialParam())

### Fit full model proportions
d <- dmFit(d, BPPARAM = BiocParallel::SerialParam())

head(proportions(d))
head(statistics(d))



Run the code above in your browser using DataLab