Learn R Programming

DRIMSeq (version 1.0.2)

plotDispersion: Dispersion versus mean expression plot

Description

Dispersion versus mean expression plot

Usage

plotDispersion(x, ...)
"plotDispersion"(x, out_dir = NULL)
"plotDispersion"(x, out_dir = NULL)

Arguments

x
dmDSdispersion or dmSQTLdispersion object.
...
Other parameters that can be defined by methods using this generic.
out_dir
Character string that is used to save the plot in paste0(out_dir, plot_name, ".pdf") file. plot_name depends on type of a plot produced, for example, plot_name = "hist_features" for histogram with number of features per gene. If NULL, the plot is returned as ggplot object and can be further modified, for example, using theme().

Value

Scatterplot of Dirichlet-multinomial gene-wise dispersion versus mean gene expression. Both variables are scaled with log10. One dot in the plot corresponds to a gene.

See Also

data_dmDSdata, data_dmSQTLdata, plotData, plotFit, plotTest

Examples

Run this code
###################################
### Differential splicing analysis
###################################
# If possible, use BPPARAM = BiocParallel::MulticoreParam() with more workers

d <- data_dmDSdata

### Filtering
# Check what is the minimal number of replicates per condition 
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3, 
 min_samps_feature_prop = 0)

### Calculate dispersion
d <- dmDispersion(d, BPPARAM = BiocParallel::SerialParam())

plotDispersion(d)



Run the code above in your browser using DataLab